ANDREW S,

TANENBAUM MODERN
BOS OPERATING
SYSTEMS

Fourth Edition

MODERN
OPERATING SYSTEMS

FOURTH EDITION

Trademarks

AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.
Android and Google Web Search are trademarks of Google Inc.
Apple and Apple Macintosh are registered trademarkes of Apple Inc.

ASM, DESPOOL, DDT, LINK-80, MAC, MP/M, PL/1-80 and SID are trademarks of Digital
Research.

BlackBerry®, RIM®, Research In Motion® and related trademarks, names and logos are the
property of Research In Motion Limited and are registered and/or used in the U.S. and coun-
tries around the world.

Blu-ray Disc™ is a trademark owned by Blu-ray Disc Association.

CD Compact Disk is a trademark of Phillips.

CDC 6600 is a trademark of Control Data Corporation.

CP/M and CP/NET are registered trademarks of Digital Research.

DEC and PDP are registered trademarks of Digital Equipment Corporation.

eCosCentric is the owner of the eCos Trademark and eCos Logo, in the US and other countries. The
marks were acquired from the Free Software Foundation on 26th February 2007. The Trademark and

Logo were previously owned by Red Hat.

The GNOME logo and GNOME name are registered trademarks or trademarks of GNOME Foundation
in the United States or other countries.

Firefox® and Firefox® OS are registered trademarks of the Mozilla Foundation.

Fortran is a trademark of IBM Corp.

FreeBSD is a registered trademark of the FreeBSD Foundation.

GE 645 is a trademark of General Electric Corporation.

Intel Core is a trademark of Intel Corporation in the U.S. and/or other countries.

Java is a trademark of Sun Microsystems, Inc., and refers to Sun’s Java programming language.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

MS-DOS and Windows are registered trademarks of Microsoft Corporation in the United States and/or
other countries.

TI Silent 700 is a trademark of Texas Instruments Incorporated.
UNIX is a registered trademark of The Open Group.

Zilog and Z80 are registered trademarks of Zilog, Inc.

MODERN
OPERATING SYSTEMS

FOURTH EDITION

ANDREW S. TANENBAUM
HERBERT BoSs

Vrije Universiteit
Amsterdam, The Netherlands

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Vice President and Editorial Director, ECS: Marcia Horton
Executive Editor: Tracy Johnson

Program Management Team Lead: Scott Disanno

Program Manager: Carole Snyder

Project Manager: Camille Trentacoste

Operations Specialist: Linda Sager

Cover Design: Black Horse Designs

Cover art: Jason Consalvo

Media Project Manager: Renata Butera

Copyright © 2015, 2008 by Pearson Education, Inc., Upper Saddle River, New Jersey, 07458,
Pearson Prentice-Hall. All rights reserved. Printed in the United States of America. This publication
is protected by Copyright and permission should be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by any

means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permission(s), write to: Rights and Permissions Department.

Pearson Prentice Hall™ is a trademark of Pearson Education, Inc.

Pearson® is a registered trademark of Pearson plc
Prentice Hall® is a registered trademark of Pearson Education, Inc.

Library of Congress Cataloging-in-Publication Data
On file

ISBN-10: 0-13-359162-X
PEARSON ISBN-13: 978-0-13-359162-0

To Suzanne, Barbara, Daniel, Aron, Nathan, Marvin, Matilde, and Olivia.
The list keeps growing. (AST)

To Marieke, Duko, Jip, and Spot. Fearsome Jedi, all. (HB)

This page intentionally left blank

CONTENTS

PREFACE xxiil

INTRODUCTION 1

1. WHAT IS AN OPERATING SYSTEM? 3
1.1.1 The Operating System as an Extended Machine 4
1.1.2 The Operating System as a Resource Manager 5

1.2 HISTORY OF OPERATING SYSTEMS 6
1.2.1 The First Generation (1945-55): Vacuum Tubes 7
1.2.2 The Second Generation (1955-65): Transistors and Batch Systems 8
1.2.3 The Third Generation (1965-1980): ICs and Multiprogramming 9
1.2.4 The Fourth Generation (1980—Present): Personal Computers 14
1.2.5 The Fifth Generation (1990—Present): Mobile Computers 19

1.3 COMPUTER HARDWARE REVIEW 20
1.3.1 Processors 21
1.3.2 Memory 24
1.3.3 Disks 27
1.3.41/0O Devices 28
1.3.5 Buses 31
1.3.6 Booting the Computer 34

vii

viii

14

1.5

1.6

1.7

1.8

CONTENTS

THE OPERATING SYSTEM ZOO 35

1.4.1 Mainframe Operating Systems 35

1.4.2 Server Operating Systems 35

1.4.3 Multiprocessor Operating Systems 36
1.4.4 Personal Computer Operating Systems 36
1.4.5 Handheld Computer Operating Systems 36
1.4.6 Embedded Operating Systems 36

1.4.7 Sensor-Node Operating Systems 37

1.4.8 Real-Time Operating Systems 37

1.4.9 Smart Card Operating Systems 38

OPERATING SYSTEM CONCEPTS 38
1.5.1 Processes 39

1.5.2 Address Spaces 41

1.53 Files 41

1.5.4 Input/Output 45

1.5.5 Protection 45

1.5.6 The Shell 45

1.5.7 Ontogeny Recapitulates Phylogeny 46

SYSTEM CALLS 50

1.6.1 System Calls for Process Management 53
1.6.2 System Calls for File Management 56

1.6.3 System Calls for Directory Management 57
1.6.4 Miscellaneous System Calls 59

1.6.5 The Windows Win32 API 60

OPERATING SYSTEM STRUCTURE 62
1.7.1 Monolithic Systems 62

1.7.2 Layered Systems 63

1.7.3 Microkernels 65

1.7.4 Client-Server Model 68

1.7.5 Virtual Machines 68

1.7.6 Exokernels 72

THE WORLD ACCORDING TO C 73
1.8.1 The C Language 73

1.8.2 Header Files 74

1.8.3 Large Programming Projects 75
1.8.4 The Model of Run Time 76

CONTENTS
1.9 RESEARCH ON OPERATING SYSTEMS 77
1.10 OUTLINE OF THE REST OF THIS BOOK 78
1.11 METRIC UNITS 79

1.12 SUMMARY 80

PROCESSES AND THREADS

2.1 PROCESSES 85
2.1.1 The Process Model 86
2.1.2 Process Creation 88
2.1.3 Process Termination 90
2.1.4 Process Hierarchies 91
2.1.5 Process States 92
2.1.6 Implementation of Processes 94
2.1.7 Modeling Multiprogramming 95

2.2 THREADS 97
2.2.1 Thread Usage 97
2.2.2 The Classical Thread Model 102
2.2.3 POSIX Threads 106
2.2.4 Implementing Threads in User Space 108
2.2.5 Implementing Threads in the Kernel 111
2.2.6 Hybrid Implementations 112
2.2.7 Scheduler Activations 113
2.2.8 Pop-Up Threads 114
2.2.9 Making Single-Threaded Code Multithreaded 115

2.3 INTERPROCESS COMMUNICATION 119
2.3.1 Race Conditions 119
2.3.2 Critical Regions 121
2.3.3 Mutual Exclusion with Busy Waiting 121
2.3.4 Sleep and Wakeup 127
2.3.5 Semaphores 130
2.3.6 Mutexes 132

ix

85

CONTENTS

2.3.7 Monitors 137

2.3.8 Message Passing 144

2.3.9 Barriers 146

2.3.10 Avoiding Locks: Read-Copy-Update 148

24 SCHEDULING 148
2.4.1 Introduction to Scheduling 149
2.4.2 Scheduling in Batch Systems 156
2.4.3 Scheduling in Interactive Systems 158
2.4.4 Scheduling in Real-Time Systems 164
2.4.5 Policy Versus Mechanism 165
2.4.6 Thread Scheduling 165

2.5 CLASSICAL IPC PROBLEMS 167
2.5.1 The Dining Philosophers Problem 167
2.5.2 The Readers and Writers Problem 169

2.6 RESEARCH ON PROCESSES AND THREADS 172

2.7 SUMMARY 173

MEMORY MANAGEMENT 181

3.1 NO MEMORY ABSTRACTION 182

32 A MEMORY ABSTRACTION: ADDRESS SPACES 185
3.2.1 The Notion of an Address Space 185
3.2.2 Swapping 187
3.2.3 Managing Free Memory 190

33 VIRTUAL MEMORY 194
3.3.1 Paging 195
3.3.2 Page Tables 198
3.3.3 Speeding Up Paging 201
3.3.4 Page Tables for Large Memories 205

34

35

3.6

3.7

3.8

39

CONTENTS xi

PAGE REPLACEMENT ALGORITHMS 209

3.4.1 The Optimal Page Replacement Algorithm 209

3.4.2 The Not Recently Used Page Replacement Algorithm 210

3.4.3 The First-In, First-Out (FIFO) Page Replacement Algorithm 211
3.4.4 The Second-Chance Page Replacement Algorithm 211

3.4.5 The Clock Page Replacement Algorithm 212

3.4.6 The Least Recently Used (LRU) Page Replacement Algorithm 213
3.4.7 Simulating LRU in Software 214

3.4.8 The Working Set Page Replacement Algorithm 215

3.4.9 The WSClock Page Replacement Algorithm 219

3.4.10 Summary of Page Replacement Algorithms 221

DESIGN ISSUES FOR PAGING SYSTEMS 222
3.5.1 Local versus Global Allocation Policies 222
3.5.2 Load Control 225

3.5.3 Page Size 225

3.5.4 Separate Instruction and Data Spaces 227
3.5.5 Shared Pages 228

3.5.6 Shared Libraries 229

3.5.7 Mapped Files 231

3.5.8 Cleaning Policy 232

3.5.9 Virtual Memory Interface 232

IMPLEMENTATION ISSUES 233

3.6.1 Operating System Involvement with Paging 233
3.6.2 Page Fault Handling 234

3.6.3 Instruction Backup 235

3.6.4 Locking Pages in Memory 236

3.6.5 Backing Store 237

3.6.6 Separation of Policy and Mechanism 239

SEGMENTATION 240

3.7.1 Implementation of Pure Segmentation 243
3.7.2 Segmentation with Paging: MULTICS 243
3.7.3 Segmentation with Paging: The Intel x86 247

RESEARCH ON MEMORY MANAGEMENT 252

SUMMARY 253

xii

CONTENTS

FILE SYSTEMS

4.1

42

43

4.4

4.5

4.6

4.7

FILES 265

4.1.1 File Naming 265

4.1.2 File Structure 267

4.1.3 File Types 268

4.1.4 File Access 269

4.1.5 File Attributes 271

4.1.6 File Operations 271

4.1.7 An Example Program Using File-System Calls 273

DIRECTORIES 276

4.2.1 Single-Level Directory Systems 276
4.2.2 Hierarchical Directory Systems 276
4.2.3 Path Names 277

4.2 4 Directory Operations 280

FILE-SYSTEM IMPLEMENTATION 281
4.3.1 File-System Layout 281

4.3.2 Implementing Files 282

4.3.3 Implementing Directories 287

4.3.4 Shared Files 290

4.3.5 Log-Structured File Systems 293
4.3.6 Journaling File Systems 294

4.3.7 Virtual File Systems 296

FILE-SYSTEM MANAGEMENT AND OPTIMIZATION 299
4.4.1 Disk-Space Management 299

4.4.2 File-System Backups 306

4.4 3 File-System Consistency 312

4.4 4 File-System Performance 314

4.4.5 Defragmenting Disks 319

EXAMPLE FILE SYSTEMS 320
4.5.1 The MS-DOS File System 320
4.5.2 The UNIX V7 File System 323
4.5.3 CD-ROM File Systems 325

RESEARCH ON FILE SYSTEMS 331

SUMMARY 332

CONTENTS xiii

INPUT/OUTPUT 337

5.1 PRINCIPLES OF I/O HARDWARE 337
5.1.1 I/O Devices 338
5.1.2 Device Controllers 339
5.1.3 Memory-Mapped I/0 340
5.1.4 Direct Memory Access 344
5.1.5 Interrupts Revisited 347

5.2 PRINCIPLES OF I/O SOFTWARE 351
5.2.1 Goals of the I/O Software 351
5.2.2 Programmed I/O 352
5.2.3 Interrupt-Driven I/O 354
5.2.41/0 Using DMA 355

53 1/0 SOFTWARE LAYERS 356
5.3.1 Interrupt Handlers 356
5.3.2 Device Drivers 357
5.3.3 Device-Independent I/O Software 361
5.3.4 User-Space 1/0 Software 367

54 DISKS 369
5.4.1 Disk Hardware 369
5.4.2 Disk Formatting 375
5.4.3 Disk Arm Scheduling Algorithms 379
5.4.4 Error Handling 382
5.4.5 Stable Storage 385

5.5 CLOCKS 388
5.5.1 Clock Hardware 388
5.5.2 Clock Software 389
5.5.3 Soft Timers 392

5.6 USER INTERFACES: KEYBOARD, MOUSE, MONITOR 394
5.6.1 Input Software 394
5.6.2 Output Software 399

5.7 THIN CLIENTS 416

5.8 POWER MANAGEMENT 417
5.8.1 Hardware Issues 418

Xiv CONTENTS

5.8.2 Operating System Issues 419
5.8.3 Application Program Issues 425

5.9 RESEARCH ON INPUT/OUTPUT 426

5.10 SUMMARY 428

6 DEADLOCKS 435

6.1 RESOURCES 436
6.1.1 Preemptable and Nonpreemptable Resources 436
6.1.2 Resource Acquisition 437

6.2 INTRODUCTION TO DEADLOCKS 438
6.2.1 Conditions for Resource Deadlocks 439
6.2.2 Deadlock Modeling 440

6.3 THE OSTRICH ALGORITHM 443

64 DEADLOCK DETECTION AND RECOVERY 443
6.4.1 Deadlock Detection with One Resource of Each Type 444
6.4.2 Deadlock Detection with Multiple Resources of Each Type 446
6.4.3 Recovery from Deadlock 448

6.5 DEADLOCK AVOIDANCE 450
6.5.1 Resource Trajectories 450
6.5.2 Safe and Unsafe States 452
6.5.3 The Banker’s Algorithm for a Single Resource 453
6.5.4 The Banker’s Algorithm for Multiple Resources 454

6.6 DEADLOCK PREVENTION 456
6.6.1 Attacking the Mutual-Exclusion Condition 456
6.6.2 Attacking the Hold-and-Wait Condition 456
6.6.3 Attacking the No-Preemption Condition 457
6.6.4 Attacking the Circular Wait Condition 457

6.7 OTHER ISSUES 458
6.7.1 Two-Phase Locking 458
6.7.2 Communication Deadlocks 459

CONTENTS XV
6.7.3 Livelock 461
6.7.4 Starvation 463
6.8 RESEARCH ON DEADLOCKS 464
6.9 SUMMARY 464
VIRTUALIZATION AND THE CLOUD 471

7.1

72

7.3

74

7.5

7.6

7.7

7.8

79

7.10

7.11

7.12

HISTORY 473

REQUIREMENTS FOR VIRTUALIZATION 474

TYPE 1 AND TYPE 2 HYPERVISORS 477
TECHNIQUES FOR EFFICIENT VIRTUALIZATION 478
7.4.1 Virtualizing the Unvirtualizable 479

7.4.2 The Cost of Virtualization 482

ARE HYPERVISORS MICROKERNELS DONE RIGHT? 483
MEMORY VIRTUALIZATION 486

I/0 VIRTUALIZATION 490

VIRTUAL APPLIANCES 493

VIRTUAL MACHINES ON MULTICORE CPUS 494
LICENSING ISSUES 494

CLOUDS 495

7.11.1 Clouds as a Service 496

7.11.2 Virtual Machine Migration 496

7.11.3 Checkpointing 497

CASE STUDY: VMWARE 498

7.12.1 The Early History of VMware 498
7.12.2 VMware Workstation 499

Xvi CONTENTS

7.12.3 Challenges in Bringing Virtualization to the x86 500
7.12.4 VMware Workstation: Solution Overview 502
7.12.5 The Evolution of VMware Workstation 511

7.12.6 ESX Server: VMware’s type 1 Hypervisor 512

7.13 RESEARCH ON VIRTUALIZATION AND THE CLOUD 514

8 MULTIPLE PROCESSOR SYSTEMS 517

8.1 MULTIPROCESSORS 520
8.1.1 Multiprocessor Hardware 520
8.1.2 Multiprocessor Operating System Types 530
8.1.3 Multiprocessor Synchronization 534
8.1.4 Multiprocessor Scheduling 539

8.2 MULTICOMPUTERS 544
8.2.1 Multicomputer Hardware 545
8.2.2 Low-Level Communication Software 550
8.2.3 User-Level Communication Software 552
8.2.4 Remote Procedure Call 556
8.2.5 Distributed Shared Memory 558
8.2.6 Multicomputer Scheduling 563
8.2.7 Load Balancing 563

8.3 DISTRIBUTED SYSTEMS 566
8.3.1 Network Hardware 568
8.3.2 Network Services and Protocols 571
8.3.3 Document-Based Middleware 576
8.3.4 File-System-Based Middleware 577
8.3.5 Object-Based Middleware 582
8.3.6 Coordination-Based Middleware 584

84 RESEARCH ON MULTIPLE PROCESSOR SYSTEMS 587

8.5 SUMMARY 588

CONTENTS xvii

SECURITY 593

9.1 THE SECURITY ENVIRONMENT 595
9.1.1 Threats 596
9.1.2 Attackers 598

9.2 OPERATING SYSTEMS SECURITY 599
9.2.1 Can We Build Secure Systems? 600
9.2.2 Trusted Computing Base 601

9.3 CONTROLLING ACCESS TO RESOURCES 602
9.3.1 Protection Domains 602
9.3.2 Access Control Lists 605
9.3.3 Capabilities 608

94 FORMAL MODELS OF SECURE SYSTEMS 611
9.4.1 Multilevel Security 612
9.4.2 Covert Channels 615

9.5 BASICS OF CRYPTOGRAPHY 619
9.5.1 Secret-Key Cryptography 620
9.5.2 Public-Key Cryptography 621
9.5.3 One-Way Functions 622
9.5.4 Digital Signatures 622
9.5.5 Trusted Platform Modules 624

9.6 AUTHENTICATION 626
9.6.1 Authentication Using a Physical Object 633
9.6.2 Authentication Using Biometrics 636

9.7 EXPLOITING SOFTWARE 639
9.7.1 Buffer Overflow Attacks 640
9.7.2 Format String Attacks 649
9.7.3 Dangling Pointers 652
9.7.4 Null Pointer Dereference Attacks 653
9.7.5 Integer Overflow Attacks 654
9.7.6 Command Injection Attacks 655
9.7.7 Time of Check to Time of Use Attacks 656

9.8 INSIDER ATTACKS 657
9.8.1 Logic Bombs 657
9.8.2 Back Doors 658
9.8.3 Login Spoofing 659

xviii

10

9.9

9.10

9.11

9.12

CONTENTS

MALWARE 660

9.9.1 Trojan Horses 662
9.9.2 Viruses 664
9.93 Worms 674

9.94 Spyware 676
9.9.5 Rootkits 680

DEFENSES 684

9.10.1 Firewalls 685

9.10.2 Antivirus and Anti-Antivirus Techniques 687
9.10.3 Code Signing 693

9.10.4 Jailing 694

9.10.5 Model-Based Intrusion Detection 695

9.10.6 Encapsulating Mobile Code 697

9.10.7 Java Security 701

RESEARCH ON SECURITY 703

SUMMARY 704

CASE STUDY 1: UNIX, LINUX, AND ANDROID

10.1

10.2

10.3

HISTORY OF UNIX AND LINUX 714
10.1.1 UNICS 714

10.1.2 PDP-11 UNIX 715

10.1.3 Portable UNIX 716

10.1.4 Berkeley UNIX 717

10.1.5 Standard UNIX 718

10.1.6 MINIX 719

10.1.7 Linux 720

OVERVIEW OF LINUX 723
10.2.1 Linux Goals 723

10.2.2 Interfaces to Linux 724
10.2.3 The Shell 725

10.2.4 Linux Utility Programs 728
10.2.5 Kernel Structure 730

PROCESSES IN LINUX 733
10.3.1 Fundamental Concepts 733
10.3.2 Process-Management System Calls in Linux 735

713

CONTENTS Xix

10.3.3 Implementation of Processes and Threads in Linux 739
10.3.4 Scheduling in Linux 746
10.3.5 Booting Linux 751

104 MEMORY MANAGEMENT IN LINUX 753
10.4.1 Fundamental Concepts 753
10.4.2 Memory Management System Calls in Linux 756
10.4.3 Implementation of Memory Management in Linux 758
10.4.4 Paging in Linux 764

10.5 INPUT/OUTPUT IN LINUX 767
10.5.1 Fundamental Concepts 767
10.5.2 Networking 769
10.5.3 Input/Output System Calls in Linux 770
10.5.4 Implementation of Input/Output in Linux 771
10.5.5 Modules in Linux 774

10.6 THE LINUX FILE SYSTEM 775
10.6.1 Fundamental Concepts 775
10.6.2 File-System Calls in Linux 780
10.6.3 Implementation of the Linux File System 783
10.6.4 NFS: The Network File System 792

10.7 SECURITY IN LINUX 798
10.7.1 Fundamental Concepts 798
10.7.2 Security System Calls in Linux 800
10.7.3 Implementation of Security in Linux 801

10.8 ANDROID 802
10.8.1 Android and Google 803
10.8.2 History of Android 803
10.8.3 Design Goals 807
10.8.4 Android Architecture 809
10.8.5 Linux Extensions 810
10.8.6 Dalvik 814
10.8.7 Binder IPC 815
10.8.8 Android Applications 824
10.8.9 Intents 836
10.8.10 Application Sandboxes 837
10.8.11 Security 838
10.8.12 Process Model 844

109 SUMMARY 848

XX CONTENTS

11 CASE STUDY 2: WINDOWS 8 857

11.1 HISTORY OF WINDOWS THROUGH WINDOWS 8.1 857
11.1.1 1980s: MS-DOS 857
11.1.2 1990s: MS-DOS-based Windows 859
11.1.3 2000s: NT-based Windows 859
11.1.4 Windows Vista 862
11.1.52010s: Modern Windows 863

112 PROGRAMMING WINDOWS 864
11.2.1 The Native NT Application Programming Interface 867
11.2.2 The Win32 Application Programming Interface 871
11.2.3 The Windows Registry 875

11.3 SYSTEM STRUCTURE 877
11.3.1 Operating System Structure 877
11.3.2 Booting Windows 893
11.3.3 Implementation of the Object Manager 894
11.3.4 Subsystems, DLLs, and User-Mode Services 905

11.4 PROCESSES AND THREADS IN WINDOWS 908
11.4.1 Fundamental Concepts 908
11.4.2 Job, Process, Thread, and Fiber Management API Calls 914
11.4.3 Implementation of Processes and Threads 919

11.5 MEMORY MANAGEMENT 927
11.5.1 Fundamental Concepts 927
11.5.2 Memory-Management System Calls 931
11.5.3 Implementation of Memory Management 932

11.6 CACHING IN WINDOWS 942

11.7 INPUT/OUTPUT IN WINDOWS 943
11.7.1 Fundamental Concepts 944
11.7.2 Input/Output API Calls 945
11.7.3 Implementation of I/O 948

11.8 THE WINDOWS NT FILE SYSTEM 952
11.8.1 Fundamental Concepts 953
11.8.2 Implementation of the NT File System 954

119 WINDOWS POWER MANAGEMENT 964

12

CONTENTS

11.10 SECURITY IN WINDOWS 8 966
11.10.1 Fundamental Concepts 967
11.10.2 Security API Calls 969
11.10.3 Implementation of Security 970
11.10.4 Security Mitigations 972

11.11 SUMMARY 975

OPERATING SYSTEM DESIGN

12.1 THE NATURE OF THE DESIGN PROBLEM 982
12.1.1 Goals 982
12.1.2 Why Is It Hard to Design an Operating System? 983

12.2 INTERFACE DESIGN 985
12.2.1 Guiding Principles 985
12.2.2 Paradigms 987
12.2.3 The System-Call Interface 991

12.3 IMPLEMENTATION 993
12.3.1 System Structure 993
12.3.2 Mechanism vs. Policy 997
12.3.3 Orthogonality 998
12.3.4 Naming 999
12.3.5 Binding Time 1001
12.3.6 Static vs. Dynamic Structures 1001
12.3.7 Top-Down vs. Bottom-Up Implementation 1003
12.3.8 Synchronous vs. Asynchronous Communication 1004
12.3.9 Useful Techniques 1005

124 PERFORMANCE 1010
12.4.1 Why Are Operating Systems Slow? 1010
12.4.2 What Should Be Optimized? 1011
12.4.3 Space-Time Trade-offs 1012
12.4 .4 Caching 1015
12.4.5 Hints 1016
12.4.6 Exploiting Locality 1016
12.4.7 Optimize the Common Case 1017

xxi

981

xxii CONTENTS

12.5 PROJECT MANAGEMENT 1018
12.5.1 The Mythical Man Month 1018
12.5.2 Team Structure 1019
12.5.3 The Role of Experience 1021
12.5.4 No Silver Bullet 1021

12.6 TRENDS IN OPERATING SYSTEM DESIGN 1022
12.6.1 Virtualization and the Cloud 1023
12.6.2 Manycore Chips 1023
12.6.3 Large-Address-Space Operating Systems 1024
12.6.4 Seamless Data Access 1025
12.6.5 Battery-Powered Computers 1025
12.6.6 Embedded Systems 1026

127 SUMMARY 1027

13 READING LIST AND BIBLIOGRAPHY 1031

13.1 SUGGESTIONS FOR FURTHER READING 1031
13.1.1 Introduction 1031
13.1.2 Processes and Threads 1032
13.1.3 Memory Management 1033
13.1.4 File Systems 1033
13.1.5 Input/Output 1034
13.1.6 Deadlocks 1035
13.1.7 Virtualization and the Cloud 1035
13.1.8 Multiple Processor Systems 1036
13.1.9 Security 1037
13.1.10 Case Study 1: UNIX, Linux, and Android 1039
13.1.11 Case Study 2: Windows 8 1040
13.1.12 Operating System Design 1040

13.2 ALPHABETICAL BIBLIOGRAPHY 1041

INDEX 1071

PREFACE

The fourth edition of this book differs from the third edition in numerous ways.
There are large numbers of small changes everywhere to bring the material up to
date as operating systems are not standing still. The chapter on Multimedia Oper-
ating Systems has been moved to the Web, primarily to make room for new mater-
ial and keep the book from growing to a completely unmanageable size. The chap-
ter on Windows Vista has been removed completely as Vista has not been the suc-
cess Microsoft hoped for. The chapter on Symbian has also been removed, as
Symbian no longer is widely available. However, the Vista material has been re-
placed by Windows 8 and Symbian has been replaced by Android. Also, a com-
pletely new chapter, on virtualization and the cloud has been added. Here is a
chapter-by-chapter rundown of the changes.

e Chapter 1 has been heavily modified and updated in many places but
with the exception of a new section on mobile computers, no major
sections have been added or deleted.

e Chapter 2 has been updated, with older material removed and some
new material added. For example, we added the futex synchronization
primitive, and a section about how to avoid locking altogether with
Read-Copy-Update.

e Chapter 3 now has more focus on modern hardware and less emphasis
on segmentation and MULTICS.

e In Chapter 4 we removed CD-Roms, as they are no longer very com-
mon, and replaced them with more modern solutions (like flash
drives). Also, we added RAID level 6 to the section on RAID.

xxiii

XXiv PREFACE

e Chapter 5 has seen a lot of changes. Older devices like CRTs and CD-
ROMs have been removed, while new technology, such as touch
screens have been added.

e Chapter 6 is pretty much unchanged. The topic of deadlocks is fairly
stable, with few new results.

e Chapter 7 is completely new. It covers the important topics of virtu-
alization and the cloud. As a case study, a section on VMware has
been added.

e Chapter 8 is an updated version of the previous material on multiproc-
essor systems. There is more emphasis on multicore and manycore
systems now, which have become increasingly important in the past
few years. Cache consistency has become a bigger issue recently and
is covered here, now.

e Chapter 9 has been heavily revised and reorganized, with considerable
new material on exploiting code bugs, malware, and defenses against
them. Attacks such as null pointer dereferences and buffer overflows
are treated in more detail. Defense mechanisms, including canaries,
the NX bit, and address-space randomization are covered in detail
now, as are the ways attackers try to defeat them.

e Chapter 10 has undergone a major change. The material on UNIX and
Linux has been updated but the major addtion here is a new and
lengthy section on the Android operating system, which is very com-
mon on smartphones and tablets.

e Chapter 11 in the third edition was on Windows Vista. That has been
replaced by a chapter on Windows 8, specifically Windows 8.1. It
brings the treatment of Windows completely up to date.

e Chapter 12 is a revised version of Chap. 13 from the previous edition.

e Chapter 13 is a thoroughly updated list of suggested readings. In addi-
tion, the list of references has been updated, with entries to 223 new
works published after the third edition of this book came out.

e Chapter 7 from the previous edition has been moved to the book’s
Website to keep the size somewhat manageable).

e In addition, the sections on research throughout the book have all been
redone from scratch to reflect the latest research in operating systems.
Furthermore, new problems have been added to all the chapters.

Numerous teaching aids for this book are available. Instructor supplements
can be found at www.pearsonhighered.com/tanenbaum. They include PowerPoint

www.pearsonhighered.com/tanenbaum

PREFACE XXV

sheets, software tools for studying operating systems, lab experiments for students,
simulators, and more material for use in operating systems courses. Instructors
using this book in a course should definitely take a look. The Companion Website
for this book is also located at www.pearsonhighered.com/tanenbaum. The specif-
ic site for this book is password protected. To use the site, click on the picture of
the cover and then follow the instructions on the student access card that came with
your text to create a user account and log in. Student resources include:

* An online chapter on Multimedia Operating Systems
e Lab Experiments
e Online Exercises

e Simulation Exercises

A number of people have been involved in the fourth edition. First and fore-
most, Prof. Herbert Bos of the Vrije Universiteit in Amsterdam has been added as
a coauthor. He is a security, UNIX, and all-around systems expert and it is great to
have him on board. He wrote much of the new material except as noted below.

Our editor, Tracy Johnson, has done a wonderful job, as usual, of herding all
the cats, putting all the pieces together, putting out fires, and keeping the project on
schedule. We were also fortunate to get our long-time production editor, Camille
Trentacoste, back. Her skills in so many areas have saved the day on more than a
few occasions. We are glad to have her again after an absence of several years.
Carole Snyder did a fine job coordinating the various people involved in the book.

The material in Chap. 7 on VMware (in Sec. 7.12) was written by Edouard
Bugnion of EPFL in Lausanne, Switzerland. Ed was one of the founders of the
VMware company and knows this material as well as anyone in the world. We
thank him greatly for supplying it to us.

Ada Gavrilovska of Georgia Tech, who is an expert on Linux internals, up-
dated Chap. 10 from the Third Edition, which she also wrote. The Android mater-
ial in Chap. 10 was written by Dianne Hackborn of Google, one of the key devel-
opers of the Android system. Android is the leading operating system on smart-
phones, so we are very grateful to have Dianne help us. Chap. 10 is now quite long
and detailed, but UNIX, Linux, and Android fans can learn a lot from it. It is per-
haps worth noting that the longest and most technical chapter in the book was writ-
ten by two women. We just did the easy stuff.

We haven’t neglected Windows, however. Dave Probert of Microsoft updated
Chap. 11 from the previous edition of the book. This time the chapter covers Win-
dows 8.1 in detail. Dave has a great deal of knowledge of Windows and enough
vision to tell the difference between places where Microsoft got it right and where
it got it wrong. Windows fans are certain to enjoy this chapter.

The book is much better as a result of the work of all these expert contributors.
Again, we would like to thank them for their invaluable help.

www.pearsonhighered.com/tanenbaum

XXVi PREFACE

We were also fortunate to have several reviewers who read the manuscript and
also suggested new end-of-chapter problems. These were Trudy Levine, Shivakant
Mishra, Krishna Sivalingam, and Ken Wong. Steve Armstrong did the PowerPoint
sheets for instructors teaching a course using the book.

Normally copyeditors and proofreaders don’t get acknowledgements, but Bob
Lentz (copyeditor) and Joe Ruddick (proofreader) did exceptionally thorough jobs.
Joe in particular, can spot the difference between a roman period and an italics
period from 20 meters. Nevertheless, the authors take full responsibility for any
residual errors in the book. Readers noticing any errors are requested to contact
one of the authors.

Finally, last but not least, Barbara and Marvin are still wonderful, as usual,
each in a unique and special way. Daniel and Matilde are great additions to our
family. Aron and Nathan are wonderful little guys and Olivia is a treasure. And of
course, I would like to thank Suzanne for her love and patience, not to mention all
the druiven, kersen, and sinaasappelsap, as well as other agricultural products.
(AST)

Most importantly, I would like to thank Marieke, Duko, and Jip. Marieke for
her love and for bearing with me all the nights I was working on this book, and
Duko and Jip for tearing me away from it and showing me there are more impor-
tant things in life. Like Minecraft. (HB)

Andrew S. Tanenbaum
Herbert Bos

ABOUT THE AUTHORS

Andrew S. Tanenbaum has an S.B. degree from M.L.T. and a Ph.D. from the
University of California at Berkeley. He is currently a Professor of Computer Sci-
ence at the Vrije Universiteit in Amsterdam, The Netherlands. He was formerly
Dean of the Advanced School for Computing and Imaging, an interuniversity grad-
uate school doing research on advanced parallel, distributed, and imaging systems.
He was also an Academy Professor of the Royal Netherlands Academy of Arts and
Sciences, which has saved him from turning into a bureaucrat. He also won a pres-
tigious European Research Council Advanced Grant.

In the past, he has done research on compilers, operating systems, networking,
and distributed systems. His main research focus now is reliable and secure oper-
ating systems. These research projects have led to over 175 refereed papers in
journals and conferences. Prof. Tanenbaum has also authored or co-authored five
books, which have been translated into 20 languages, ranging from Basque to Thai.
They are used at universities all over the world. In all, there are 163 versions (lan-
guage + edition combinations) of his books.

Prof. Tanenbaum has also produced a considerable volume of software, not-
ably MINIX, a small UNIX clone. It was the direct inspiration for Linux and the
platform on which Linux was initially developed. The current version of MINIX,
called MINIX 3, is now focused on being an extremely reliable and secure operat-
ing system. Prof. Tanenbaum will consider his work done when no user has any
idea what an operating system crash is. MINIX 3 is an ongoing open-source proj-
ect to which you are invited to contribute. Go to www.minix3.org to download a
free copy of MINIX 3 and give it a try. Both x86 and ARM versions are available.

Prof. Tanenbaum’s Ph.D. students have gone on to greater glory after graduat-
ing. He is very proud of them. In this respect, he resembles a mother hen.

Prof. Tanenbaum is a Fellow of the ACM, a Fellow of the IEEE, and a member
of the Royal Netherlands Academy of Arts and Sciences. He has also won numer-
ous scientific prizes from ACM, IEEE, and USENIX. If you are unbearably curi-
ous about them, see his page on Wikipedia. He also has two honorary doctorates.

Herbert Bos obtained his Masters degree from Twente University and his
Ph.D. from Cambridge University Computer Laboratory in the U.K.. Since then, he
has worked extensively on dependable and efficient I/O architectures for operating
systems like Linux, but also research systems based on MINIX 3. He is currently a
professor in Systems and Network Security in the Dept. of Computer Science at
the Vrije Universiteit in Amsterdam, The Netherlands. His main research field is
system security. With his students, he works on novel ways to detect and stop at-
tacks, to analyze and reverse engineer malware, and to take down botnets (malici-
ous infrastructures that may span millions of computers). In 2011, he obtained an
ERC Starting Grant for his research on reverse engineering. Three of his students
have won the Roger Needham Award for best European Ph.D. thesis in systems.

www.minix3.org

This page intentionally left blank

MODERN OPERATING SYSTEMS

This page intentionally left blank

INTRODUCTION

A modern computer consists of one or more processors, some main memory,
disks, printers, a keyboard, a mouse, a display, network interfaces, and various
other input/output devices. All in all, a complex system.oo If every application pro-
grammer had to understand how all these things work in detail, no code would ever
get written. Furthermore, managing all these components and using them optimally
is an exceedingly challenging job. For this reason, computers are equipped with a
layer of software called the operating system, whose job is to provide user pro-
grams with a better, simpler, cleaner, model of the computer and to handle manag-
ing all the resources just mentioned. Operating systems are the subject of this
book.

Most readers will have had some experience with an operating system such as
Windows, Linux, FreeBSD, or OS X, but appearances can be deceiving. The pro-
gram that users interact with, usually called the shell when it is text based and the
GUI (Graphical User Interface)—which is pronounced “gooey” —when it uses
icons, is actually not part of the operating system, although it uses the operating
system to get its work done.

A simple overview of the main components under discussion here is given in
Fig. 1-1. Here we see the hardware at the bottom. The hardware consists of chips,
boards, disks, a keyboard, a monitor, and similar physical objects. On top of the
hardware is the software. Most computers have two modes of operation: kernel
mode and user mode. The operating system, the most fundamental piece of soft-
ware, runs in kernel mode (also called supervisor mode). In this mode it has

1

2 INTRODUCTION CHAP. 1

complete access to all the hardware and can execute any instruction the machine is
capable of executing. The rest of the software runs in user mode, in which only a
subset of the machine instructions is available. In particular, those instructions that
affect control of the machine or do I/O)Input/Output" are forbidden to user-mode
programs. We will come back to the difference between kernel mode and user
mode repeatedly throughout this book. It plays a crucial role in how operating sys-
tems work.

E-mail Music
Web reader player
browser f
\ /
User mode @ @
User interface program Software
Kernel mode Operating system

Figure 1-1. Where the operating system fits in.

The user interface program, shell or GUI, is the lowest level of user-mode soft-
ware, and allows the user to start other programs, such as a Web browser, email
reader, or music player. These programs, too, make heavy use of the operating sys-
tem.

The placement of the operating system is shown in Fig. 1-1. It runs on the
bare hardware and provides the base for all the other software.

An important distinction between the operating system and normal (user-
mode) software is that if a user does not like a particular email reader, hef is free to
get a different one or write his own if he so chooses; he is not free to write his own
clock interrupt handler, which is part of the operating system and is protected by
hardware against attempts by users to modify it.

This distinction, however, is sometimes blurred in embedded systems (which
may not have kernel mode) or interpreted systems (such as Java-based systems that
use interpretation, not hardware, to separate the components).

Also, in many systems there are programs that run in user mode but help the
operating system or perform privileged functions. For example, there is often a
program that allows users to change their passwords. It is not part of the operating
system and does not run in kernel mode, but it clearly carries out a sensitive func-
tion and has to be protected in a special way. In some systems, this idea is carried
to an extreme, and pieces of what is traditionally considered to be the operating
T “He” should be read as “he or she” throughout the book.

SEC. 1.1 WHAT IS AN OPERATING SYSTEM? 3

system (such as the file system) run in user space. In such systems, it is difficult to
draw a clear boundary. Everything running in kernel mode is clearly part of the
operating system, but some programs running outside it are arguably also part of it,
or at least closely associated with it.

Operating systems differ from user (i.e., application) programs in ways other
than where they reside. In particular, they are huge, complex, and long-lived. The
source code of the heart of an operating system like Linux or Windows is on the
order of five million lines of code or more. To conceive of what this means, think
of printing out five million lines in book form, with 50 lines per page and 1000
pages per volume (larger than this book). It would take 100 volumes to list an op-
erating system of this size—essentially an entire bookcase. Can you imagine get-
ting a job maintaining an operating system and on the first day having your boss
bring you to a bookcase with the code and say: “Go learn that.” And this is only
for the part that runs in the kernel. When essential shared libraries are included,
Windows is well over 70 million lines of code or 10 to 20 bookcases. And this
excludes basic application software (things like Windows Explorer, Windows
Media Player, and so on).

It should be clear now why operating systems live a long time—they are very
hard to write, and having written one, the owner is loath to throw it out and start
again. Instead, such systems evolve over long periods of time. Windows 95/98/Me
was basically one operating system and Windows NT/2000/XP/Vista/Windows 7 is
a different one. They look similar to the users because Microsoft made very sure
that the user interface of Windows 2000/XP/Vista/Windows 7 was quite similar to
that of the system it was replacing, mostly Windows 98. Nevertheless, there were
very good reasons why Microsoft got rid of Windows 98. We will come to these
when we study Windows in detail in Chap. 11.

Besides Windows, the other main example we will use throughout this book is
UNIX and its variants and clones. It, too, has evolved over the years, with versions
like System V, Solaris, and FreeBSD being derived from the original system,
whereas Linux is a fresh code base, although very closely modeled on UNIX and
highly compatible with it. We will use examples from UNIX throughout this book
and look at Linux in detail in Chap. 10.

In this chapter we will briefly touch on a number of key aspects of operating
systems, including what they are, their history, what kinds are around, some of the
basic concepts, and their structure. We will come back to many of these important
topics in later chapters in more detail.

1.1 WHAT IS AN OPERATING SYSTEM?

It is hard to pin down what an operating system is other than saying it is the
software that runs in kernel mode—and even that is not always true. Part of the
problem is that operating systems perform two essentially unrelated functions:

4 INTRODUCTION CHAP. 1

providing application programmers (and application programs, naturally) a clean
abstract set of resources instead of the messy hardware ones and managing these
hardware resources. Depending on who is doing the talking, you might hear mostly
about one function or the other. Let us now look at both.

1.1.1 The Operating System as an Extended Machine

The architecture (instruction set, memory organization, I/O, and bus struc-
ture) of most computers at the machine-language level is primitive and awkward to
program, especially for input/output. To make this point more concrete, consider
modern SATA (Serial ATA) hard disks used on most computers. A book (Ander-
son, 2007) describing an early version of the interface to the disk—what a pro-
grammer would have to know to use the disk—ran over 450 pages. Since then, the
interface has been revised multiple times and is more complicated than it was in
2007. Clearly, no sane programmer would want to deal with this disk at the hard-
ware level. Instead, a piece of software, called a disk driver, deals with the hard-
ware and provides an interface to read and write disk blocks, without getting into
the details. Operating systems contain many drivers for controlling I/O devices.

But even this level is much too low for most applications. For this reason, all
operating systems provide yet another layer of abstraction for using disks: files.
Using this abstraction, programs can create, write, and read files, without having to
deal with the messy details of how the hardware actually works.

This abstraction is the key to managing all this complexity. Good abstractions
turn a nearly impossible task into two manageable ones. The first is defining and
implementing the abstractions. The second is using these abstractions to solve the
problem at hand. One abstraction that almost every computer user understands is
the file, as mentioned above. It is a useful piece of information, such as a digital
photo, saved email message, song, or Web page. It is much easier to deal with pho-
tos, emails, songs, and Web pages than with the details of SATA (or other) disks.
The job of the operating system is to create good abstractions and then implement
and manage the abstract objects thus created. In this book, we will talk a lot about
abstractions. They are one of the keys to understanding operating systems.

This point is so important that it is worth repeating in different words. With all
due respect to the industrial engineers who so carefully designed the Macintosh,
hardware is ugly. Real processors, memories, disks, and other devices are very
complicated and present difficult, awkward, idiosyncratic, and inconsistent inter-
faces to the people who have to write software to use them. Sometimes this is due
to the need for backward compatibility with older hardware. Other times it is an
attempt to save money. Often, however, the hardware designers do not realize (or
care) how much trouble they are causing for the software. One of the major tasks
of the operating system is to hide the hardware and present programs (and their
programmers) with nice, clean, elegant, consistent, abstractions to work with in-
stead. Operating systems turn the ugly into the beautiful, as shown in Fig. 1-2.

SEC. 1.1 WHAT IS AN OPERATING SYSTEM? 5

Application programs

~<— Beautiful interface

- —— Ugly interface

Hardware

Figure 1-2. Operating systems turn ugly hardware into beautiful abstractions.

It should be noted that the operating system’s real customers are the applica-
tion programs (via the application programmers, of course). They are the ones
who deal directly with the operating system and its abstractions. In contrast, end
users deal with the abstractions provided by the user interface, either a com-
mand-line shell or a graphical interface. While the abstractions at the user interface
may be similar to the ones provided by the operating system, this is not always the
case. To make this point clearer, consider the normal Windows desktop and the
line-oriented command prompt. Both are programs running on the Windows oper-
ating system and use the abstractions Windows provides, but they offer very dif-
ferent user interfaces. Similarly, a Linux user running Gnome or KDE sees a very
different interface than a Linux user working directly on top of the underlying X
Window System, but the underlying operating system abstractions are the same in
both cases.

In this book, we will study the abstractions provided to application programs in
great detail, but say rather little about user interfaces. That is a large and important
subject, but one only peripherally related to operating systems.

1.1.2 The Operating System as a Resource Manager

The concept of an operating system as primarily providing abstractions to ap-
plication programs is a top-down view. An alternative, bottom-up, view holds that
the operating system is there to manage all the pieces of a complex system. Mod-
ern computers consist of processors, memories, timers, disks, mice, network inter-
faces, printers, and a wide variety of other devices. In the bottom-up view, the job
of the operating system is to provide for an orderly and controlled allocation of the
processors, memories, and I/0 devices among the various programs wanting them.

Modern operating systems allow multiple programs to be in memory and run
at the same time. Imagine what would happen if three programs running on some
computer all tried to print their output simultaneously on the same printer. The first

6 INTRODUCTION CHAP. 1

few lines of printout might be from program 1, the next few from program 2, then
some from program 3, and so forth. The result would be utter chaos. The operating
system can bring order to the potential chaos by buffering all the output destined
for the printer on the disk. When one program is finished, the operating system can
then copy its output from the disk file where it has been stored for the printer,
while at the same time the other program can continue generating more output,
oblivious to the fact that the output is not really going to the printer (yet).

When a computer (or network) has more than one user, the need for managing
and protecting the memory, I/O devices, and other resources is even more since the
users might otherwise interfere with one another. In addition, users often need to
share not only hardware, but information (files, databases, etc.) as well. In short,
this view of the operating system holds that its primary task is to keep track of
which programs are using which resource, to grant resource requests, to account
for usage, and to mediate conflicting requests from different programs and users.

Resource management includes multiplexing (sharing) resources in two dif-
ferent ways: in time and in space. When a resource is time multiplexed, different
programs or users take turns using it. First one of them gets to use the resource,
then another, and so on. For example, with only one CPU and multiple programs
that want to run on it, the operating system first allocates the CPU to one program,
then, after it has run long enough, another program gets to use the CPU, then an-
other, and then eventually the first one again. Determining how the resource is time
multiplexed—who goes next and for how long—is the task of the operating sys-
tem. Another example of time multiplexing is sharing the printer. When multiple
print jobs are queued up for printing on a single printer, a decision has to be made
about which one is to be printed next.

The other kind of multiplexing is space multiplexing. Instead of the customers
taking turns, each one gets part of the resource. For example, main memory is nor-
mally divided up among several running programs, so each one can be resident at
the same time (for example, in order to take turns using the CPU). Assuming there
is enough memory to hold multiple programs, it is more efficient to hold several
programs in memory at once rather than give one of them all of it, especially if it
only needs a small fraction of the total. Of course, this raises issues of fairness,
protection, and so on, and it is up to the operating system to solve them. Another
resource that is space multiplexed is the disk. In many systems a single disk can
hold files from many users at the same time. Allocating disk space and keeping
track of who is using which disk blocks is a typical operating system task.

1.2 HISTORY OF OPERATING SYSTEMS

Operating systems have been evolving through the years. In the following sec-
tions we will briefly look at a few of the highlights. Since operating systems have
historically been closely tied to the architecture of the computers on which they

SEC. 1.2 HISTORY OF OPERATING SYSTEMS 7

run, we will look at successive generations of computers to see what their operat-
ing systems were like. This mapping of operating system generations to computer
generations is crude, but it does provide some structure where there would other-
wise be none.

The progression given below is largely chronological, but it has been a bumpy
ride. Each development did not wait until the previous one nicely finished before
getting started. There was a lot of overlap, not to mention many false starts and
dead ends. Take this as a guide, not as the last word.

The first true digital computer was designed by the English mathematician
Charles Babbage (1792-1871). Although Babbage spent most of his life and for-
tune trying to build his “analytical engine,” he never got it working properly be-
cause it was purely mechanical, and the technology of his day could not produce
the required wheels, gears, and cogs to the high precision that he needed. Needless
to say, the analytical engine did not have an operating system.

As an interesting historical aside, Babbage realized that he would need soft-
ware for his analytical engine, so he hired a young woman named Ada Lovelace,
who was the daughter of the famed British poet Lord Byron, as the world’s first
programmer. The programming language Ada® is named after her.

1.2.1 The First Generation (1945-55): Vacuum Tubes

After Babbage’s unsuccessful efforts, little progress was made in constructing
digital computers until the World War II period, which stimulated an explosion of
activity. Professor John Atanasoff and his graduate student Clifford Berry built
what is now regarded as the first functioning digital computer at lowa State Univer-
sity. It used 300 vacuum tubes. At roughly the same time, Konrad Zuse in Berlin
built the Z3 computer out of electromechanical relays. In 1944, the Colossus was
built and programmed by a group of scientists (including Alan Turing) at Bletchley
Park, England, the Mark I was built by Howard Aiken at Harvard, and the ENIAC
was built by William Mauchley and his graduate student J. Presper Eckert at the
University of Pennsylvania. Some were binary, some used vacuum tubes, some
were programmable, but all were very primitive and took seconds to perform even
the simplest calculation.

In these early days, a single group of people (usually engineers) designed,
built, programmed, operated, and maintained each machine. All programming was
done in absolute machine language, or even worse yet, by wiring up electrical cir-
cuits by connecting thousands of cables to plugboards to control the machine’s
basic functions. Programming languages were unknown (even assembly language
was unknown). Operating systems were unheard of. The usual mode of operation
was for the programmer to sign up for a block of time using the signup sheet on the
wall, then come down to the machine room, insert his or her plugboard into the
computer, and spend the next few hours hoping that none of the 20,000 or so vac-
uum tubes would burn out during the run. Virtually all the problems were simple

8 INTRODUCTION CHAP. 1

straightforward mathematical and numerical calculations, such as grinding out
tables of sines, cosines, and logarithms, or computing artillery trajectories.

By the early 1950s, the routine had improved somewhat with the introduction
of punched cards. It was now possible to write programs on cards and read them in
instead of using plugboards; otherwise, the procedure was the same.

1.2.2 The Second Generation (1955-65): Transistors and Batch Systems

The introduction of the transistor in the mid-1950s changed the picture radi-
cally. Computers became reliable enough that they could be manufactured and sold
to paying customers with the expectation that they would continue to function long
enough to get some useful work done. For the first time, there was a clear separa-
tion between designers, builders, operators, programmers, and maintenance per-
sonnel.

These machines, now called mainframes, were locked away in large, specially
air-conditioned computer rooms, with staffs of professional operators to run them.
Only large corporations or major government agencies or universities could afford
the multimillion-dollar price tag. To run a job (i.e., a program or set of programs),
a programmer would first write the program on paper (in FORTRAN or assem-
bler), then punch it on cards. He would then bring the card deck down to the input
room and hand it to one of the operators and go drink coffee until the output was
ready.

When the computer finished whatever job it was currently running, an operator
would go over to the printer and tear off the output and carry it over to the output
room, so that the programmer could collect it later. Then he would take one of the
card decks that had been brought from the input room and read it in. If the FOR-
TRAN compiler was needed, the operator would have to get it from a file cabinet
and read it in. Much computer time was wasted while operators were walking
around the machine room.

Given the high cost of the equipment, it is not surprising that people quickly
looked for ways to reduce the wasted time. The solution generally adopted was the
batch system. The idea behind it was to collect a tray full of jobs in the input
room and then read them onto a magnetic tape using a small (relatively) inexpen-
sive computer, such as the IBM 1401, which was quite good at reading cards,
copying tapes, and printing output, but not at all good at numerical calculations.
Other, much more expensive machines, such as the IBM 7094, were used for the
real computing. This situation is shown in Fig. 1-3.

After about an hour of collecting a batch of jobs, the cards were read onto a
magnetic tape, which was carried into the machine room, where it was mounted on
a tape drive. The operator then loaded a special program (the ancestor of today’s
operating system), which read the first job from tape and ran it. The output was
written onto a second tape, instead of being printed. After each job finished, the
operating system automatically read the next job from the tape and began running

SEC. 1.2 HISTORY OF OPERATING SYSTEMS 9

Tape System
drive Input tape Output
Card tape
reader |2) ° 9 HSIE Q S|[D)| Printer
—_— \ —_—]
= 0 9 0 9 0 9, 0 9 0 9
(U (i (It
1401 7094 1401

(@) (b) (©) (d) (e) ()

Figure 1-3. An early batch system. (a) Programmers bring cards to 1401. (b)
1401 reads batch of jobs onto tape. (c) Operator carries input tape to 7094. (d)
7094 does computing. (e) Operator carries output tape to 1401. (f) 1401 prints
output.

it. When the whole batch was done, the operator removed the input and output
tapes, replaced the input tape with the next batch, and brought the output tape to a
1401 for printing off line (i.e., not connected to the main computer).

The structure of a typical input job is shown in Fig. 1-4. It started out with a
$JOB card, specifying the maximum run time in minutes, the account number to be
charged, and the programmer’s name. Then came a $SFORTRAN card, telling the
operating system to load the FORTRAN compiler from the system tape. It was di-
rectly followed by the program to be compiled, and then a $LOAD card, directing
the operating system to load the object program just compiled. (Compiled pro-
grams were often written on scratch tapes and had to be loaded explicitly.) Next
came the $RUN card, telling the operating system to run the program with the data
following it. Finally, the $END card marked the end of the job. These primitive
control cards were the forerunners of modern shells and command-line inter-
preters.

Large second-generation computers were used mostly for scientific and engin-
eering calculations, such as solving the partial differential equations that often oc-
cur in physics and engineering. They were largely programmed in FORTRAN and
assembly language. Typical operating systems were FMS (the Fortran Monitor
System) and IBSYS, IBM’s operating system for the 7094.

1.2.3 The Third Generation (1965-1980): ICs and Multiprogramming

By the early 1960s, most computer manufacturers had two distinct, incompati-
ble, product lines. On the one hand, there were the word-oriented, large-scale sci-
entific computers, such as the 7094, which were used for industrial-strength nu-
merical calculations in science and engineering. On the other hand, there were the

10 INTRODUCTION CHAP. 1

/$END

Data for program

FORTRAN program

[
/ $FORTRAN

$JOB, 10,7710802, MARVIN TANENBAUM

Figure 1-4. Structure of a typical FMS job.

character-oriented, commercial computers, such as the 1401, which were widely
used for tape sorting and printing by banks and insurance companies.

Developing and maintaining two completely different product lines was an ex-
pensive proposition for the manufacturers. In addition, many new computer cus-
tomers initially needed a small machine but later outgrew it and wanted a bigger
machine that would run all their old programs, but faster.

IBM attempted to solve both of these problems at a single stroke by introduc-
ing the System/360. The 360 was a series of software-compatible machines rang-
ing from 1401-sized models to much larger ones, more powerful than the mighty
7094. The machines differed only in price and performance (maximum memory,
processor speed, number of 1/O devices permitted, and so forth). Since they all had
the same architecture and instruction set, programs written for one machine could
run on all the others—at least in theory. (But as Yogi Berra reputedly said: “In
theory, theory and practice are the same; in practice, they are not.”) Since the 360
was designed to handle both scientific (i.e., numerical) and commercial computing,
a single family of machines could satisfy the needs of all customers. In subsequent
years, IBM came out with backward compatible successors to the 360 line, using
more modern technology, known as the 370, 4300, 3080, and 3090. The zSeries is
the most recent descendant of this line, although it has diverged considerably from
the original.

The IBM 360 was the first major computer line to use (small-scale) ICs (Inte-
grated Circuits), thus providing a major price/performance advantage over the
second-generation machines, which were built up from individual transistors. It

SEC. 1.2 HISTORY OF OPERATING SYSTEMS 11

was an immediate success, and the idea of a family of compatible computers was
soon adopted by all the other major manufacturers. The descendants of these ma-
chines are still in use at computer centers today. Nowadays they are often used for
managing huge databases (e.g., for airline reservation systems) or as servers for
World Wide Web sites that must process thousands of requests per second.

The greatest strength of the “single-family” idea was simultaneously its great-
est weakness. The original intention was that all software, including the operating
system, OS/360, had to work on all models. It had to run on small systems, which
often just replaced 1401s for copying cards to tape, and on very large systems,
which often replaced 7094s for doing weather forecasting and other heavy comput-
ing. It had to be good on systems with few peripherals and on systems with many
peripherals. It had to work in commercial environments and in scientific environ-
ments. Above all, it had to be efficient for all of these different uses.

There was no way that IBM (or anybody else for that matter) could write a
piece of software to meet all those conflicting requirements. The result was an
enormous and extraordinarily complex operating system, probably two to three
orders of magnitude larger than FMS. It consisted of millions of lines of assembly
language written by thousands of programmers, and contained thousands upon
thousands of bugs, which necessitated a continuous stream of new releases in an
attempt to correct them. Each new release fixed some bugs and introduced new
ones, so the number of bugs probably remained constant over time.

One of the designers of OS/360, Fred Brooks, subsequently wrote a witty and
incisive book (Brooks, 1995) describing his experiences with OS/360. While it
would be impossible to summarize the book here, suffice it to say that the cover
shows a herd of prehistoric beasts stuck in a tar pit. The cover of Silberschatz et al.
(2012) makes a similar point about operating systems being dinosaurs.

Despite its enormous size and problems, OS/360 and the similar third-genera-
tion operating systems produced by other computer manufacturers actually satis-
fied most of their customers reasonably well. They also popularized several key
techniques absent in second-generation operating systems. Probably the most im-
portant of these was multiprogramming. On the 7094, when the current job
paused to wait for a tape or other I/O operation to complete, the CPU simply sat
idle until the I/O finished. With heavily CPU-bound scientific calculations, I/O is
infrequent, so this wasted time is not significant. With commercial data processing,
the I/O wait time can often be 80 or 90% of the total time, so something had to be
done to avoid having the (expensive) CPU be idle so much.

The solution that evolved was to partition memory into several pieces, with a
different job in each partition, as shown in Fig. 1-5. While one job was waiting for
I/O to complete, another job could be using the CPU. If enough jobs could be held
in main memory at once, the CPU could be kept busy nearly 100% of the time.
Having multiple jobs safely in memory at once requires special hardware to protect
each job against snooping and mischief by the other ones, but the 360 and other
third-generation systems were equipped with this hardware.

12 INTRODUCTION CHAP. 1

Job 3
Job 2
Memory
Job 1 partitions
Operating
system

Figure 1-5. A multiprogramming system with three jobs in memory.

Another major feature present in third-generation operating systems was the
ability to read jobs from cards onto the disk as soon as they were brought to the
computer room. Then, whenever a running job finished, the operating system could
load a new job from the disk into the now-empty partition and run it. This techni-
que is called spooling (from Simultaneous Peripheral Operation On Line) and
was also used for output. With spooling, the 1401s were no longer needed, and
much carrying of tapes disappeared.

Although third-generation operating systems were well suited for big scientific
calculations and massive commercial data-processing runs, they were still basically
batch systems. Many programmers pined for the first-generation days when they
had the machine all to themselves for a few hours, so they could debug their pro-
grams quickly. With third-generation systems, the time between submitting a job
and getting back the output was often several hours, so a single misplaced comma
could cause a compilation to fail, and the programmer to waste half a day. Pro-
grammers did not like that very much.

This desire for quick response time paved the way for timesharing, a variant
of multiprogramming, in which each user has an online terminal. In a timesharing
system, if 20 users are logged in and 17 of them are thinking or talking or drinking
coffee, the CPU can be allocated in turn to the three jobs that want service. Since
people debugging programs usually issue short commands (e.g., compile a five-
page proceduret) rather than long ones (e.g., sort a million-record file), the com-
puter can provide fast, interactive service to a number of users and perhaps also
work on big batch jobs in the background when the CPU is otherwise idle. The
first general-purpose timesharing system, CTSS (Compatible Time Sharing Sys-
tem), was developed at M.I.T. on a specially modified 7094 (Corbat?6 et al., 1962).
However, timesharing did not really become popular until the necessary protection
hardware became widespread during the third generation.

After the success of the CTSS system, M.I.T., Bell Labs, and General Electric
(at that time a major computer manufacturer) decided to embark on the develop-
ment of a “computer utility,” that is, a machine that would support some hundreds

2«

TWe will use the terms “procedure,” “subroutine,” and “function” interchangeably in this book.

SEC. 1.2 HISTORY OF OPERATING SYSTEMS 13

of simultaneous timesharing users. Their model was the electricity system—when
you need electric power, you just stick a plug in the wall, and within reason, as
much power as you need will be there. The designers of this system, known as
MULTICS (MULTiplexed Information and Computing Service), envisioned
one huge machine providing computing power for everyone in the Boston area.
The idea that machines 10,000 times faster than their GE-645 mainframe would be
sold (for well under $1000) by the millions only 40 years later was pure science
fiction. Sort of like the idea of supersonic trans-Atlantic undersea trains now.

MULTICS was a mixed success. It was designed to support hundreds of users
on a machine only slightly more powerful than an Intel 386-based PC, although it
had much more I/O capacity. This is not quite as crazy as it sounds, since in those
days people knew how to write small, efficient programs, a skill that has subse-
quently been completely lost. There were many reasons that MULTICS did not
take over the world, not the least of which is that it was written in the PL/I pro-
gramming language, and the PL/I compiler was years late and barely worked at all
when it finally arrived. In addition, MULTICS was enormously ambitious for its
time, much like Charles Babbage’s analytical engine in the nineteenth century.

To make a long story short, MULTICS introduced many seminal ideas into the
computer literature, but turning it into a serious product and a major commercial
success was a lot harder than anyone had expected. Bell Labs dropped out of the
project, and General Electric quit the computer business altogether. However,
M.LT. persisted and eventually got MULTICS working. It was ultimately sold as a
commercial product by the company (Honeywell) that bought GE’s computer busi-
ness and was installed by about 80 major companies and universities worldwide.
While their numbers were small, MULTICS users were fiercely loyal. General
Motors, Ford, and the U.S. National Security Agency, for example, shut down their
MULTICS systems only in the late 1990s, 30 years after MULTICS was released,
after years of trying to get Honeywell to update the hardware.

By the end of the 20th century, the concept of a computer utility had fizzled
out, but it may well come back in the form of cloud computing, in which rel-
atively small computers (including smartphones, tablets, and the like) are con-
nected to servers in vast and distant data centers where all the computing is done,
with the local computer just handling the user interface. The motivation here is
that most people do not want to administrate an increasingly complex and finicky
computer system and would prefer to have that work done by a team of profession-
als, for example, people working for the company running the data center. E-com-
merce is already evolving in this direction, with various companies running emails
on multiprocessor servers to which simple client machines connect, very much in
the spirit of the MULTICS design.

Despite its lack of commercial success, MULTICS had a huge influence on
subsequent operating systems (especially UNIX and its derivatives, FreeBSD,
Linux, iOS, and Android). It is described in several papers and a book (Corbat6 et
al., 1972; Corbat6 and Vyssotsky, 1965; Daley and Dennis, 1968; Organick, 1972;

14 INTRODUCTION CHAP. 1

and Saltzer, 1974). It also has an active Website, located at www.multicians.org,
with much information about the system, its designers, and its users.

Another major development during the third generation was the phenomenal
growth of minicomputers, starting with the DEC PDP-1 in 1961. The PDP-1 had
only 4K of 18-bit words, but at $120,000 per machine (less than 5% of the price of
a 7094), it sold like hotcakes. For certain kinds of nonnumerical work, it was al-
most as fast as the 7094 and gave birth to a whole new industry. It was quickly fol-
lowed by a series of other PDPs (unlike IBM’s family, all incompatible) culminat-
ing in the PDP-11.

One of the computer scientists at Bell Labs who had worked on the MULTICS
project, Ken Thompson, subsequently found a small PDP-7 minicomputer that no
one was using and set out to write a stripped-down, one-user version of MULTICS.
This work later developed into the UNIX operating system, which became popular
in the academic world, with government agencies, and with many companies.

The history of UNIX has been told elsewhere (e.g., Salus, 1994). Part of that
story will be given in Chap. 10. For now, suffice it to say that because the source
code was widely available, various organizations developed their own (incompati-
ble) versions, which led to chaos. Two major versions developed, System V, from
AT&T, and BSD (Berkeley Software Distribution) from the University of Cali-
fornia at Berkeley. These had minor variants as well. To make it possible to write
programs that could run on any UNIX system, IEEE developed a standard for
UNIX, called POSIX, that most versions of UNIX now support. POSIX defines a
minimal system-call interface that conformant UNIX systems must support. In
fact, some other operating systems now also support the POSIX interface.

As an aside, it is worth mentioning that in 1987, the author released a small
clone of UNIX, called MINIX, for educational purposes. Functionally, MINIX is
very similar to UNIX, including POSIX support. Since that time, the original ver-
sion has evolved into MINIX 3, which is highly modular and focused on very high
reliability. It has the ability to detect and replace faulty or even crashed modules
(such as I/O device drivers) on the fly without a reboot and without disturbing run-
ning programs. Its focus is on providing very high dependability and availability.
A book describing its internal operation and listing the source code in an appendix
is also available (Tanenbaum and Woodhull, 2006). The MINIX 3 system is avail-
able for free (including all the source code) over the Internet at www.minix3.org.

The desire for a free production (as opposed to educational) version of MINIX
led a Finnish student, Linus Torvalds, to write Linux. This system was directly
inspired by and developed on MINIX and originally supported various MINIX fea-
tures (e.g., the MINIX file system). It has since been extended in many ways by
many people but still retains some underlying structure common to MINIX and to
UNIX. Readers interested in a detailed history of Linux and the open source
movement might want to read Glyn Moody’s (2001) book. Most of what will be
said about UNIX in this book thus applies to System V, MINIX, Linux, and other
versions and clones of UNIX as well.

www.multicians.org
www.minix3.org

SEC. 1.2 HISTORY OF OPERATING SYSTEMS 15

1.2.4 The Fourth Generation (1980—Present): Personal Computers

With the development of LSI (Large Scale Integration) circuits—chips con-
taining thousands of transistors on a square centimeter of silicon—the age of the
personal computer dawned. In terms of architecture, personal computers (initially
called microcomputers) were not all that different from minicomputers of the
PDP-11 class, but in terms of price they certainly were different. Where the
minicomputer made it possible for a department in a company or university to have
its own computer, the microprocessor chip made it possible for a single individual
to have his or her own personal computer.

In 1974, when Intel came out with the 8080, the first general-purpose 8-bit
CPU, it wanted an operating system for the 8080, in part to be able to test it. Intel
asked one of its consultants, Gary Kildall, to write one. Kildall and a friend first
built a controller for the newly released Shugart Associates 8-inch floppy disk and
hooked the floppy disk up to the 8080, thus producing the first microcomputer with
a disk. Kildall then wrote a disk-based operating system called CP/M (Control
Program for Microcomputers) for it. Since Intel did not think that disk-based
microcomputers had much of a future, when Kildall asked for the rights to CP/M,
Intel granted his request. Kildall then formed a company, Digital Research, to fur-
ther develop and sell CP/M.

In 1977, Digital Research rewrote CP/M to make it suitable for running on the
many microcomputers using the 8080, Zilog Z80, and other CPU chips. Many ap-
plication programs were written to run on CP/M, allowing it to completely domi-
nate the world of microcomputing for about 5 years.

In the early 1980s, IBM designed the IBM PC and looked around for software
to run on it. People from IBM contacted Bill Gates to license his BASIC inter-
preter. They also asked him if he knew of an operating system to run on the PC.
Gates suggested that IBM contact Digital Research, then the world’s dominant op-
erating systems company. Making what was surely the worst business decision in
recorded history, Kildall refused to meet with IBM, sending a subordinate instead.
To make matters even worse, his lawyer even refused to sign IBM’s nondisclosure
agreement covering the not-yet-announced PC. Consequently, IBM went back to
Gates asking if he could provide them with an operating system.

When IBM came back, Gates realized that a local computer manufacturer,
Seattle Computer Products, had a suitable operating system, DOS (Disk Operat-
ing System). He approached them and asked to buy it (allegedly for $75,000),
which they readily accepted. Gates then offered IBM a DOS/BASIC package,
which IBM accepted. IBM wanted certain modifications, so Gates hired the per-
son who wrote DOS, Tim Paterson, as an employee of Gates’ fledgling company,
Microsoft, to make them. The revised system was renamed MS-DOS (MicroSoft
Disk Operating System) and quickly came to dominate the IBM PC market. A
key factor here was Gates’ (in retrospect, extremely wise) decision to sell MS-DOS
to computer companies for bundling with their hardware, compared to Kildall’s

16 INTRODUCTION CHAP. 1

attempt to sell CP/M to end users one at a time (at least initially). After all this
transpired, Kildall died suddenly and unexpectedly from causes that have not been
fully disclosed.

By the time the successor to the IBM PC, the IBM PC/AT, came out in 1983
with the Intel 80286 CPU, MS-DOS was firmly entrenched and CP/M was on its
last legs. MS-DOS was later widely used on the 80386 and 80486. Although the
initial version of MS-DOS was fairly primitive, subsequent versions included more
advanced features, including many taken from UNIX. (Microsoft was well aware
of UNIX, even selling a microcomputer version of it called XENIX during the
company’s early years.)

CP/M, MS-DQOS, and other operating systems for early microcomputers were
all based on users typing in commands from the keyboard. That eventually chang-
ed due to research done by Doug Engelbart at Stanford Research Institute in the
1960s. Engelbart invented the Graphical User Interface, complete with windows,
icons, menus, and mouse. These ideas were adopted by researchers at Xerox PARC
and incorporated into machines they built.

One day, Steve Jobs, who co-invented the Apple computer in his garage, vis-
ited PARC, saw a GUI, and instantly realized its potential value, something Xerox
management famously did not. This strategic blunder of gargantuan proportions
led to a book entitled Fumbling the Future (Smith and Alexander, 1988). Jobs then
embarked on building an Apple with a GUI. This project led to the Lisa, which
was too expensive and failed commercially. Jobs’ second attempt, the Apple Mac-
intosh, was a huge success, not only because it was much cheaper than the Lisa,
but also because it was user friendly, meaning that it was intended for users who
not only knew nothing about computers but furthermore had absolutely no inten-
tion whatsoever of learning. In the creative world of graphic design, professional
digital photography, and professional digital video production, Macintoshes are
very widely used and their users are very enthusiastic about them. In 1999, Apple
adopted a kernel derived from Carnegie Mellon University’s Mach microkernel
which was originally developed to replace the kernel of BSD UNIX. Thus, Mac
OS X is a UNIX-based operating system, albeit with a very distinctive interface.

When Microsoft decided to build a successor to MS-DOS, it was strongly
influenced by the success of the Macintosh. It produced a GUI-based system call-
ed Windows, which originally ran on top of MS-DOS (i.e., it was more like a shell
than a true operating system). For about 10 years, from 1985 to 1995, Windows
was just a graphical environment on top of MS-DOS. However, starting in 1995 a
freestanding version, Windows 95, was released that incorporated many operating
system features into it, using the underlying MS-DOS system only for booting and
running old MS-DOS programs. In 1998, a slightly modified version of this sys-
tem, called Windows 98 was released. Nevertheless, both Windows 95 and Win-
dows 98 still contained a large amount of 16-bit Intel assembly language.

Another Microsoft operating system, Windows NT (where the NT stands for
New Technology), which was compatible with Windows 95 at a certain level, but a

SEC. 1.2 HISTORY OF OPERATING SYSTEMS 17

complete rewrite from scratch internally. It was a full 32-bit system. The lead de-
signer for Windows NT was David Cutler, who was also one of the designers of the
VAX VMS operating system, so some ideas from VMS are present in NT. In fact,
so many ideas from VMS were present in it that the owner of VMS, DEC, sued
Microsoft. The case was settled out of court for an amount of money requiring
many digits to express. Microsoft expected that the first version of NT would kill
off MS-DOS and all other versions of Windows since it was a vastly superior sys-
tem, but it fizzled. Only with Windows NT 4.0 did it finally catch on in a big way,
especially on corporate networks. Version 5 of Windows NT was renamed Win-
dows 2000 in early 1999. It was intended to be the successor to both Windows 98
and Windows NT 4.0.

That did not quite work out either, so Microsoft came out with yet another ver-
sion of Windows 98 called Windows Me (Millennium Edition). In 2001, a
slightly upgraded version of Windows 2000, called Windows XP was released.
That version had a much longer run (6 years), basically replacing all previous ver-
sions of Windows.

Still the spawning of versions continued unabated. After Windows 2000,
Microsoft broke up the Windows family into a client and a server line. The client
line was based on XP and its successors, while the server line included Windows
Server 2003 and Windows 2008. A third line, for the embedded world, appeared a
little later. All of these versions of Windows forked off their variations in the form
of service packs. It was enough to drive some administrators (and writers of oper-
ating systems textbooks) balmy.

Then in January 2007, Microsoft finally released the successor to Windows
XP, called Vista. It came with a new graphical interface, improved security, and
many new or upgraded user programs. Microsoft hoped it would replace Windows
XP completely, but it never did. Instead, it received much criticism and a bad press,
mostly due to the high system requirements, restrictive licensing terms, and sup-
port for Digital Rights Management, techniques that made it harder for users to
copy protected material.

With the arrival of Windows 7, a new and much less resource hungry version
of the operating system, many people decided to skip Vista altogether. Windows 7
did not introduce too many new features, but it was relatively small and quite sta-
ble. In less than three weeks, Windows 7 had obtained more market share than
Vista in seven months. In 2012, Microsoft launched its successor, Windows 8, an
operating system with a completely new look and feel, geared for touch screens.
The company hopes that the new design will become the dominant operating sys-
tem on a much wider variety of devices: desktops, laptops, notebooks, tablets,
phones, and home theater PCs. So far, however, the market penetration is slow
compared to Windows 7.

The other major contender in the personal computer world is UNIX (and its
various derivatives). UNIX is strongest on network and enterprise servers but is
also often present on desktop computers, notebooks, tablets, and smartphones. On

18 INTRODUCTION CHAP. 1

x86-based computers, Linux is becoming a popular alternative to Windows for stu-
dents and increasingly many corporate users.

As an aside, throughout this book we will use the term x86 to refer to all mod-
ern processors based on the family of instruction-set architectures that started with
the 8086 in the 1970s. There are many such processors, manufactured by com-
panies like AMD and Intel, and under the hood they often differ considerably:
processors may be 32 bits or 64 bits with few or many cores and pipelines that may
be deep or shallow, and so on. Nevertheless, to the programmer, they all look quite
similar and they can all still run 8086 code that was written 35 years ago. Where
the difference is important, we will refer to explicit models instead—and use
x86-32 and x86-64 to indicate 32-bit and 64-bit variants.

FreeBSD is also a popular UNIX derivative, originating from the BSD project
at Berkeley. All modern Macintosh computers run a modified version of FreeBSD
(OS X). UNIX is also standard on workstations powered by high-performance
RISC chips. Its derivatives are widely used on mobile devices, such as those run-
ning i0OS 7 or Android.

Many UNIX users, especially experienced programmers, prefer a command-
based interface to a GUI, so nearly all UNIX systems support a windowing system
called the X Window System (also known as X11) produced at M.I.T. This sys-
tem handles the basic window management, allowing users to create, delete, move,
and resize windows using a mouse. Often a complete GUI, such as Gnome or
KDE, is available to run on top of X11, giving UNIX a look and feel something
like the Macintosh or Microsoft Windows, for those UNIX users who want such a
thing.

An interesting development that began taking place during the mid-1980s is
the growth of networks of personal computers running network operating sys-
tems and distributed operating systems (Tanenbaum and Van Steen, 2007). In a
network operating system, the users are aware of the existence of multiple com-
puters and can log in to remote machines and copy files from one machine to an-
other. Each machine runs its own local operating system and has its own local user
(or users).

Network operating systems are not fundamentally different from single-proc-
essor operating systems. They obviously need a network interface controller and
some low-level software to drive it, as well as programs to achieve remote login
and remote file access, but these additions do not change the essential structure of
the operating system.

A distributed operating system, in contrast, is one that appears to its users as a
traditional uniprocessor system, even though it is actually composed of multiple
processors. The users should not be aware of where their programs are being run or
where their files are located; that should all be handled automatically and ef-
ficiently by the operating system.

True distributed operating systems require more than just adding a little code
to a uniprocessor operating system, because distributed and centralized systems

SEC. 1.2 HISTORY OF OPERATING SYSTEMS 19

differ in certain critical ways. Distributed systems, for example, often allow appli-
cations to run on several processors at the same time, thus requiring more complex
processor scheduling algorithms in order to optimize the amount of parallelism.

Communication delays within the network often mean that these (and other)
algorithms must run with incomplete, outdated, or even incorrect information. This
situation differs radically from that in a single-processor system in which the oper-
ating system has complete information about the system state.

1.2.5 The Fifth Generation (1990-Present): Mobile Computers

Ever since detective Dick Tracy started talking to his “two-way radio wrist
watch” in the 1940s comic strip, people have craved a communication device they
could carry around wherever they went. The first real mobile phone appeared in
1946 and weighed some 40 kilos. You could take it wherever you went as long as
you had a car in which to carry it.

The first true handheld phone appeared in the 1970s and, at roughly one kilo-
gram, was positively featherweight. It was affectionately known as “the brick.”
Pretty soon everybody wanted one. Today, mobile phone penetration is close to
90% of the global population. We can make calls not just with our portable phones
and wrist watches, but soon with eyeglasses and other wearable items. Moreover,
the phone part is no longer that interesting. We receive email, surf the Web, text
our friends, play games, navigate around heavy traffic—and do not even think
twice about it.

While the idea of combining telephony and computing in a phone-like device
has been around since the 1970s also, the first real smartphone did not appear until
the mid-1990s when Nokia released the N9000, which literally combined two,
mostly separate devices: a phone and a PDA (Personal Digital Assistant). In 1997,
Ericsson coined the term smartphone for its GS88 ““Penelope.”

Now that smartphones have become ubiquitous, the competition between the
various operating systems is fierce and the outcome is even less clear than in the
PC world. At the time of writing, Google’s Android is the dominant operating sys-
tem with Apple’s iOS a clear second, but this was not always the case and all may
be different again in just a few years. If anything is clear in the world of smart-
phones, it is that it is not easy to stay king of the mountain for long.

After all, most smartphones in the first decade after their inception were run-
ning Symbian OS. It was the operating system of choice for popular brands like
Samsung, Sony Ericsson, Motorola, and especially Nokia. However, other operat-
ing systems like RIM’s Blackberry OS (introduced for smartphones in 2002) and
Apple’s i0S (released for the first iPhone in 2007) started eating into Symbian’s
market share. Many expected that RIM would dominate the business market, while
iOS would be the king of the consumer devices. Symbian’s market share plum-
meted. In 2011, Nokia ditched Symbian and announced it would focus on Win-
dows Phone as its primary platform. For some time, Apple and RIM were the toast

20 INTRODUCTION CHAP. 1

of the town (although not nearly as dominant as Symbian had been), but it did not
take very long for Android, a Linux-based operating system released by Google in
2008, to overtake all its rivals.

For phone manufacturers, Android had the advantage that it was open source
and available under a permissive license. As a result, they could tinker with it and
adapt it to their own hardware with ease. Also, it has a huge community of devel-
opers writing apps, mostly in the familiar Java programming language. Even so,
the past years have shown that the dominance may not last, and Android’s competi-
tors are eager to claw back some of its market share. We will look at Android in
detail in Sec. 10.8.

1.3 COMPUTER HARDWARE REVIEW

An operating system is intimately tied to the hardware of the computer it runs
on. It extends the computer’s instruction set and manages its resources. To work,
it must know a great deal about the hardware, at least about how the hardware ap-
pears to the programmer. For this reason, let us briefly review computer hardware
as found in modern personal computers. After that, we can start getting into the de-
tails of what operating systems do and how they work.

Conceptually, a simple personal computer can be abstracted to a model resem-
bling that of Fig. 1-6. The CPU, memory, and I/O devices are all connected by a
system bus and communicate with one another over it. Modern personal computers
have a more complicated structure, involving multiple buses, which we will look at
later. For the time being, this model will be sufficient. In the following sections,
we will briefly review these components and examine some of the hardware issues
that are of concern to operating system designers. Needless to say, this will be a
very compact summary. Many books have been written on the subject of computer
hardware and computer organization. Two well-known ones are by Tanenbaum
and Austin (2012) and Patterson and Hennessy (2013).

Monitor

Y —N Hard
Keyboard USB printer disk drive
— ooooo
) Hard
Video Keyboard usB ;
CPU Memory disk
controller controller controller controller

Bus

Figure 1-6. Some of the components of a simple personal computer.

SEC. 1.3 COMPUTER HARDWARE REVIEW 21

1.3.1 Processors

The “brain” of the computer is the CPU. It fetches instructions from memory
and executes them. The basic cycle of every CPU is to fetch the first instruction
from memory, decode it to determine its type and operands, execute it, and then
fetch, decode, and execute subsequent instructions. The cycle is repeated until the
program finishes. In this way, programs are carried out.

Each CPU has a specific set of instructions that it can execute. Thus an x86
processor cannot execute ARM programs and an ARM processor cannot execute
x86 programs. Because accessing memory to get an instruction or data word takes
much longer than executing an instruction, all CPUs contain some registers inside
to hold key variables and temporary results. Thus the instruction set generally con-
tains instructions to load a word from memory into a register, and store a word
from a register into memory. Other instructions combine two operands from regis-
ters, memory, or both into a result, such as adding two words and storing the result
in a register or in memory.

In addition to the general registers used to hold variables and temporary re-
sults, most computers have several special registers that are visible to the pro-
grammer. One of these is the program counter, which contains the memory ad-
dress of the next instruction to be fetched. After that instruction has been fetched,
the program counter is updated to point to its successor.

Another register is the stack pointer, which points to the top of the current
stack in memory. The stack contains one frame for each procedure that has been
entered but not yet exited. A procedure’s stack frame holds those input parameters,
local variables, and temporary variables that are not kept in registers.

Yet another register is the PSW (Program Status Word). This register con-
tains the condition code bits, which are set by comparison instructions, the CPU
priority, the mode (user or kernel), and various other control bits. User programs
may normally read the entire PSW but typically may write only some of its fields.
The PSW plays an important role in system calls and I/O.

The operating system must be fully aware of all the registers. When time mul-
tiplexing the CPU, the operating system will often stop the running program to
(re)start another one. Every time it stops a running program, the operating system
must save all the registers so they can be restored when the program runs later.

To improve performance, CPU designers have long abandoned the simple
model of fetching, decoding, and executing one instruction at a time. Many modern
CPUs have facilities for executing more than one instruction at the same time. For
example, a CPU might have separate fetch, decode, and execute units, so that while
it is executing instruction #, it could also be decoding instruction n + 1 and fetch-
ing instruction n + 2. Such an organization is called a pipeline and is illustrated in
Fig. 1-7(a) for a pipeline with three stages. Longer pipelines are common. In most
pipeline designs, once an instruction has been fetched into the pipeline, it must be
executed, even if the preceding instruction was a conditional branch that was taken.

22 INTRODUCTION CHAP. 1

Pipelines cause compiler writers and operating system writers great headaches be-
cause they expose the complexities of the underlying machine to them and they
have to deal with them.

Execute
unit
Fetch Decode
unit = unit
; Execute
Fetch) Decode :>Execute Holding unit
unit unit unit
Fetch Decode
unit 1 unit
Execute
unit
(a) (b)

Figure 1-7. (a) A three-stage pipeline. (b) A superscalar CPU.

Even more advanced than a pipeline design is a superscalar CPU, shown in
Fig. 1-7(b). In this design, multiple execution units are present, for example, one
for integer arithmetic, one for floating-point arithmetic, and one for Boolean opera-
tions. Two or more instructions are fetched at once, decoded, and dumped into a
holding buffer until they can be executed. As soon as an execution unit becomes
available, it looks in the holding buffer to see if there is an instruction it can hand-
le, and if so, it removes the instruction from the buffer and executes it. An implica-
tion of this design is that program instructions are often executed out of order. For
the most part, it is up to the hardware to make sure the result produced is the same
one a sequential implementation would have produced, but an annoying amount of
the complexity is foisted onto the operating system, as we shall see.

Most CPUs, except very simple ones used in embedded systems, have two
modes, kernel mode and user mode, as mentioned earlier. Usually, a bit in the PSW
controls the mode. When running in kernel mode, the CPU can execute every in-
struction in its instruction set and use every feature of the hardware. On desktop
and server machines, the operating system normally runs in kernel mode, giving it
access to the complete hardware. On most embedded systems, a small piece runs
in kernel mode, with the rest of the operating system running in user mode.

User programs always run in user mode, which permits only a subset of the in-
structions to be executed and a subset of the features to be accessed. Generally, all
instructions involving I/O and memory protection are disallowed in user mode.
Setting the PSW mode bit to enter kernel mode is also forbidden, of course.

To obtain services from the operating system, a user program must make a sys-
tem call, which traps into the kernel and invokes the operating system. The TRAP
instruction switches from user mode to kernel mode and starts the operating sys-
tem. When the work has been completed, control is returned to the user program at
the instruction following the system call. We will explain the details of the system
call mechanism later in this chapter. For the time being, think of it as a special kind

SEC. 1.3 COMPUTER HARDWARE REVIEW 23

of procedure call that has the additional property of switching from user mode to
kernel mode. As a note on typography, we will use the lower-case Helvetica font
to indicate system calls in running text, like this: read.

It is worth noting that computers have traps other than the instruction for ex-
ecuting a system call. Most of the other traps are caused by the hardware to warn
of an exceptional situation such as an attempt to divide by O or a floating-point
underflow. In all cases the operating system gets control and must decide what to
do. Sometimes the program must be terminated with an error. Other times the
error can be ignored (an underflowed number can be set to 0). Finally, when the
program has announced in advance that it wants to handle certain kinds of condi-
tions, control can be passed back to the program to let it deal with the problem.

Multithreaded and Multicore Chips

Moore’s law states that the number of transistors on a chip doubles every 18
months. This “law” is not some kind of law of physics, like conservation of mo-
mentum, but is an observation by Intel cofounder Gordon Moore of how fast proc-
ess engineers at the semiconductor companies are able to shrink their transistors.
Moore’s law has held for over three decades now and is expected to hold for at
least one more. After that, the number of atoms per transistor will become too
small and quantum mechanics will start to play a big role, preventing further
shrinkage of transistor sizes.

The abundance of transistors is leading to a problem: what to do with all of
them? We saw one approach above: superscalar architectures, with multiple func-
tional units. But as the number of transistors increases, even more is possible. One
obvious thing to do is put bigger caches on the CPU chip. That is definitely hap-
pening, but eventually the point of diminishing returns will be reached.

The obvious next step is to replicate not only the functional units, but also
some of the control logic. The Intel Pentium 4 introduced this property, called
multithreading or hyperthreading (Intel’s name for it), to the x86 processor, and
several other CPU chips also have it—including the SPARC, the Power5, the Intel
Xeon, and the Intel Core family. To a first approximation, what it does is allow the
CPU to hold the state of two different threads and then switch back and forth on a
nanosecond time scale. (A thread is a kind of lightweight process, which, in turn,
is a running program; we will get into the details in Chap. 2.) For example, if one
of the processes needs to read a word from memory (which takes many clock
cycles), a multithreaded CPU can just switch to another thread. Multithreading
does not offer true parallelism. Only one process at a time is running, but
thread-switching time is reduced to the order of a nanosecond.

Multithreading has implications for the operating system because each thread
appears to the operating system as a separate CPU. Consider a system with two
actual CPUs, each with two threads. The operating system will see this as four
CPUs. If there is only enough work to keep two CPUs busy at a certain point in

24 INTRODUCTION CHAP. 1

time, it may inadvertently schedule two threads on the same CPU, with the other
CPU completely idle. This choice is far less efficient than using one thread on each
CPU.

Beyond multithreading, many CPU chips now have four, eight, or more com-
plete processors or cores on them. The multicore chips of Fig. 1-8 effectively carry
four minichips on them, each with its own independent CPU. (The caches will be
explained below.) Some processors, like Intel Xeon Phi and the Tilera TilePro, al-
ready sport more than 60 cores on a single chip. Making use of such a multicore
chip will definitely require a multiprocessor operating system.

Incidentally, in terms of sheer numbers, nothing beats a modern GPU (Graph-
ics Processing Unit). A GPU is a processor with, literally, thousands of tiny cores.
They are very good for many small computations done in parallel, like rendering
polygons in graphics applications. They are not so good at serial tasks. They are
also hard to program. While GPUs can be useful for operating systems (e.g., en-
cryption or processing of network traffic), it is not likely that much of the operating
system itself will run on the GPUs.

L1 —rf
cache || core 1 | | Core 2
el =

Figure 1-8. (a) A quad-core chip with a shared L2 cache. (b) A quad-core chip
with separate L2 caches.

1.3.2 Memory

The second major component in any computer is the memory. Ideally, a memo-
ry should be extremely fast (faster than executing an instruction so that the CPU is
not held up by the memory), abundantly large, and dirt cheap. No current technol-
ogy satisfies all of these goals, so a different approach is taken. The memory sys-
tem is constructed as a hierarchy of layers, as shown in Fig. 1-9. The top layers
have higher speed, smaller capacity, and greater cost per bit than the lower ones,
often by factors of a billion or more.

The top layer consists of the registers internal to the CPU. They are made of
the same material as the CPU and are thus just as fast as the CPU. Consequently,
there is no delay in accessing them. The storage capacity available in them is

SEC. 1.3 COMPUTER HARDWARE REVIEW 25

Typical access time Typical capacity
1 nsec Registers <1 KB
2 nsec | Cache | 4 MB
10 nsec | Main memory | 1-8 GB
10 msec | Magnetic disk | 1-4TB

Figure 1-9. A typical memory hierarchy. The numbers are very rough approximations.

typically 32 x 32 bits on a 32-bit CPU and 64 X 64 bits on a 64-bit CPU. Less than
1 KB in both cases. Programs must manage the registers (i.e., decide what to keep
in them) themselves, in software.

Next comes the cache memory, which is mostly controlled by the hardware.
Main memory is divided up into cache lines, typically 64 bytes, with addresses 0
to 63 in cache line 0, 64 to 127 in cache line 1, and so on. The most heavily used
cache lines are kept in a high-speed cache located inside or very close to the CPU.
When the program needs to read a memory word, the cache hardware checks to see
if the line needed is in the cache. If it is, called a cache hit, the request is satisfied
from the cache and no memory request is sent over the bus to the main memory.
Cache hits normally take about two clock cycles. Cache misses have to go to
memory, with a substantial time penalty. Cache memory is limited in size due to its
high cost. Some machines have two or even three levels of cache, each one slower
and bigger than the one before it.

Caching plays a major role in many areas of computer science, not just caching
lines of RAM. Whenever a resource can be divided into pieces, some of which are
used much more heavily than others, caching is often used to improve perfor-
mance. Operating systems use it all the time. For example, most operating systems
keep (pieces of) heavily used files in main memory to avoid having to fetch them
from the disk repeatedly. Similarly, the results of converting long path names like

/homelast/projects/minix3/src/kernel/clock.c

into the disk address where the file is located can be cached to avoid repeated

lookups. Finally, when the address of a Web page (URL) is converted to a network

address (IP address), the result can be cached for future use. Many other uses exist.
In any caching system, several questions come up fairly soon, including:

1. When to put a new item into the cache.

2. Which cache line to put the new item in.

3. Which item to remove from the cache when a slot is needed.
4

Where to put a newly evicted item in the larger memory.

26 INTRODUCTION CHAP. 1

Not every question is relevant to every caching situation. For caching lines of main
memory in the CPU cache, a new item will generally be entered on every cache
miss. The cache line to use is generally computed by using some of the high-order
bits of the memory address referenced. For example, with 4096 cache lines of 64
bytes and 32 bit addresses, bits 6 through 17 might be used to specify the cache
line, with bits O to 5 the byte within the cache line. In this case, the item to remove
is the same one as the new data goes into, but in other systems it might not be.
Finally, when a cache line is rewritten to main memory (if it has been modified
since it was cached), the place in memory to rewrite it to is uniquely determined by
the address in question.

Caches are such a good idea that modern CPUs have two of them. The first
level or L1 cache is always inside the CPU and usually feeds decoded instructions
into the CPU’s execution engine. Most chips have a second L1 cache for very
heavily used data words. The L1 caches are typically 16 KB each. In addition,
there is often a second cache, called the L.2 cache, that holds several megabytes of
recently used memory words. The difference between the L1 and L2 caches lies in
the timing. Access to the L1 cache is done without any delay, whereas access to
the L2 cache involves a delay of one or two clock cycles.

On multicore chips, the designers have to decide where to place the caches. In
Fig. 1-8(a), a single L2 cache is shared by all the cores. This approach is used in
Intel multicore chips. In contrast, in Fig. 1-8(b), each core has its own L2 cache.
This approach is used by AMD. Each strategy has its pros and cons. For example,
the Intel shared L2 cache requires a more complicated cache controller but the
AMD way makes keeping the L2 caches consistent more difficult.

Main memory comes next in the hierarchy of Fig. 1-9. This is the workhorse
of the memory system. Main memory is usually called RAM (Random Access
Memory). Old-timers sometimes call it core memory, because computers in the
1950s and 1960s used tiny magnetizable ferrite cores for main memory. They have
been gone for decades but the name persists. Currently, memories are hundreds of
megabytes to several gigabytes and growing rapidly. All CPU requests that cannot
be satisfied out of the cache go to main memory.

In addition to the main memory, many computers have a small amount of non-
volatile random-access memory. Unlike RAM, nonvolatile memory does not lose
its contents when the power is switched off. ROM (Read Only Memory) is pro-
grammed at the factory and cannot be changed afterward. It is fast and inexpen-
sive. On some computers, the bootstrap loader used to start the computer is con-
tained in ROM. Also, some I/O cards come with ROM for handling low-level de-
vice control.

EEPROM (Electrically Erasable PROM) and flash memory are also non-
volatile, but in contrast to ROM can be erased and rewritten. However, writing
them takes orders of magnitude more time than writing RAM, so they are used in
the same way ROM is, only with the additional feature that it is now possible to
correct bugs in programs they hold by rewriting them in the field.

SEC. 1.3 COMPUTER HARDWARE REVIEW 27

Flash memory is also commonly used as the storage medium in portable elec-
tronic devices. It serves as film in digital cameras and as the disk in portable music
players, to name just two uses. Flash memory is intermediate in speed between
RAM and disk. Also, unlike disk memory, if it is erased too many times, it wears
out.

Yet another kind of memory is CMOS, which is volatile. Many computers use
CMOS memory to hold the current time and date. The CMOS memory and the
clock circuit that increments the time in it are powered by a small battery, so the
time is correctly updated, even when the computer is unplugged. The CMOS mem-
ory can also hold the configuration parameters, such as which disk to boot from.
CMOS is used because it draws so little power that the original factory-installed
battery often lasts for several years. However, when it begins to fail, the computer
can appear to have Alzheimer’s disease, forgetting things that it has known for
years, like which hard disk to boot from.

1.3.3 Disks

Next in the hierarchy is magnetic disk (hard disk). Disk storage is two orders
of magnitude cheaper than RAM per bit and often two orders of magnitude larger
as well. The only problem is that the time to randomly access data on it is close to
three orders of magnitude slower. The reason is that a disk is a mechanical device,
as shown in Fig. 1-10.

Read/write head (1 per surface)

Surface 7 K | S

Surface 6 =

Surface 5 >< = |

Surface 4 e S

Surface 3 = | -—
>< Direction of arm motion

Surface 2 =]

Surface 1 >< = |

Surface 0

Figure 1-10. Structure of a disk drive.

A disk consists of one or more metal platters that rotate at 5400, 7200, 10,800
RPM or more. A mechanical arm pivots over the platters from the corner, similar
to the pickup arm on an old 33-RPM phonograph for playing vinyl records.

28 INTRODUCTION CHAP. 1

Information is written onto the disk in a series of concentric circles. At any given
arm position, each of the heads can read an annular region called a track. Toget-
her, all the tracks for a given arm position form a cylinder.

Each track is divided into some number of sectors, typically 512 bytes per sec-
tor. On modern disks, the outer cylinders contain more sectors than the inner ones.
Moving the arm from one cylinder to the next takes about 1 msec. Moving it to a
random cylinder typically takes 5 to 10 msec, depending on the drive. Once the
arm is on the correct track, the drive must wait for the needed sector to rotate under
the head, an additional delay of 5 msec to 10 msec, depending on the drive’s RPM.
Once the sector is under the head, reading or writing occurs at a rate of 50 MB/sec
on low-end disks to 160 MB/sec on faster ones.

Sometimes you will hear people talk about disks that are really not disks at all,
like SSDs, (Solid State Disks). SSDs do not have moving parts, do not contain
platters in the shape of disks, and store data in (Flash) memory. The only ways in
which they resemble disks is that they also store a lot of data which is not lost
when the power is off.

Many computers support a scheme known as virtual memory, which we will
discuss at some length in Chap. 3. This scheme makes it possible to run programs
larger than physical memory by placing them on the disk and using main memory
as a kind of cache for the most heavily executed parts. This scheme requires re-
mapping memory addresses on the fly to convert the address the program gener-
ated to the physical address in RAM where the word is located. This mapping is
done by a part of the CPU called the MMU (Memory Management Unit), as
shown in Fig. 1-6.

The presence of caching and the MMU can have a major impact on per-
formance. In a multiprogramming system, when switching from one program to
another, sometimes called a context switch, it may be necessary to flush all modi-
fied blocks from the cache and change the mapping registers in the MMU. Both of
these are expensive operations, and programmers try hard to avoid them. We will
see some of the implications of their tactics later.

1.3.4 1/0 Devices

The CPU and memory are not the only resources that the operating system
must manage. I/O devices also interact heavily with the operating system. As we
saw in Fig. 1-6, I/O devices generally consist of two parts: a controller and the de-
vice itself. The controller is a chip or a set of chips that physically controls the de-
vice. It accepts commands from the operating system, for example, to read data
from the device, and carries them out.

In many cases, the actual control of the device is complicated and detailed, so
it is the job of the controller to present a simpler (but still very complex) interface
to the operating system. For example, a disk controller might accept a command to

SEC. 1.3 COMPUTER HARDWARE REVIEW 29

read sector 11,206 from disk 2. The controller then has to convert this linear sector
number to a cylinder, sector, and head. This conversion may be complicated by the
fact that outer cylinders have more sectors than inner ones and that some bad sec-
tors have been remapped onto other ones. Then the controller has to determine
which cylinder the disk arm is on and give it a command to move in or out the req-
uisite number of cylinders. It has to wait until the proper sector has rotated under
the head and then start reading and storing the bits as they come off the drive,
removing the preamble and computing the checksum. Finally, it has to assemble
the incoming bits into words and store them in memory. To do all this work, con-
trollers often contain small embedded computers that are programmed to do their
work.

The other piece is the actual device itself. Devices have fairly simple inter-
faces, both because they cannot do much and to make them standard. The latter is
needed so that any SATA disk controller can handle any SATA disk, for example.
SATA stands for Serial ATA and ATA in turn stands for AT Attachment. In case
you are curious what AT stands for, this was IBM’s second generation ‘““Personal
Computer Advanced Technology” built around the then-extremely-potent 6-MHz
80286 processor that the company introduced in 1984. What we learn from this is
that the computer industry has a habit of continuously enhancing existing acro-
nyms with new prefixes and suffixes. We also learned that an adjective like ““ad-
vanced” should be used with great care, or you will look silly thirty years down the
line.

SATA is currently the standard type of disk on many computers. Since the ac-
tual device interface is hidden behind the controller, all that the operating system
sees is the interface to the controller, which may be quite different from the inter-
face to the device.

Because each type of controller is different, different software is needed to
control each one. The software that talks to a controller, giving it commands and
accepting responses, is called a device driver. Each controller manufacturer has to
supply a driver for each operating system it supports. Thus a scanner may come
with drivers for OS X, Windows 7, Windows 8, and Linux, for example.

To be used, the driver has to be put into the operating system so it can run in
kernel mode. Drivers can actually run outside the kernel, and operating systems
like Linux and Windows nowadays do offer some support for doing so. The vast
majority of the drivers still run below the kernel boundary. Only very few current
systems, such as MINIX 3, run all drivers in user space. Drivers in user space must
be allowed to access the device in a controlled way, which is not straightforward.

There are three ways the driver can be put into the kernel. The first way is to
relink the kernel with the new driver and then reboot the system. Many older UNIX
systems work like this. The second way is to make an entry in an operating system
file telling it that it needs the driver and then reboot the system. At boot time, the
operating system goes and finds the drivers it needs and loads them. Windows
works this way. The third way is for the operating system to be able to accept new

30 INTRODUCTION CHAP. 1

drivers while running and install them on the fly without the need to reboot. This
way used to be rare but is becoming much more common now. Hot-pluggable
devices, such as USB and IEEE 1394 devices (discussed below), always need dy-
namically loaded drivers.

Every controller has a small number of registers that are used to communicate
with it. For example, a minimal disk controller might have registers for specifying
the disk address, memory address, sector count, and direction (read or write). To
activate the controller, the driver gets a command from the operating system, then
translates it into the appropriate values to write into the device registers. The col-
lection of all the device registers forms the I/O port space, a subject we will come
back to in Chap. 5.

On some computers, the device registers are mapped into the operating sys-
tem’s address space (the addresses it can use), so they can be read and written like
ordinary memory words. On such computers, no special I/O instructions are re-
quired and user programs can be kept away from the hardware by not putting these
memory addresses within their reach (e.g., by using base and limit registers). On
other computers, the device registers are put in a special I/O port space, with each
register having a port address. On these machines, special IN and OUT instructions
are available in kernel mode to allow drivers to read and write the registers. The
former scheme eliminates the need for special I/O instructions but uses up some of
the address space. The latter uses no address space but requires special instruc-
tions. Both systems are widely used.

Input and output can be done in three different ways. In the simplest method, a
user program issues a system call, which the kernel then translates into a procedure
call to the appropriate driver. The driver then starts the I/O and sits in a tight loop
continuously polling the device to see if it is done (usually there is some bit that in-
dicates that the device is still busy). When the I/O has completed, the driver puts
the data (if any) where they are needed and returns. The operating system then re-
turns control to the caller. This method is called busy waiting and has the disad-
vantage of tying up the CPU polling the device until it is finished.

The second method is for the driver to start the device and ask it to give an in-
terrupt when it is finished. At that point the driver returns. The operating system
then blocks the caller if need be and looks for other work to do. When the con-
troller detects the end of the transfer, it generates an interrupt to signal comple-
tion.

Interrupts are very important in operating systems, so let us examine the idea
more closely. In Fig. 1-11(a) we see a three-step process for I/O. In step 1, the
driver tells the controller what to do by writing into its device registers. The con-
troller then starts the device. When the controller has finished reading or writing
the number of bytes it has been told to transfer, it signals the interrupt controller
chip using certain bus lines in step 2. If the interrupt controller is ready to accept
the interrupt (which it may not be if it is busy handling a higher-priority one), it as-
serts a pin on the CPU chip telling it, in step 3. In step 4, the interrupt controller

SEC. 1.3 COMPUTER HARDWARE REVIEW 31

puts the number of the device on the bus so the CPU can read it and know which
device has just finished (many devices may be running at the same time).

Disk drive

4, Current instruction

I Next instruction
CPU | Interrupt Disk
controller controller 3. Return
1. Interrupt

1[(g2

w

] \

2. Dispatch

to handler
Interrupt handler -~

(@) (b)
Figure 1-11. (a) The steps in starting an I/O device and getting an interrupt. (b)

Interrupt processing involves taking the interrupt, running the interrupt handler,
and returning to the user program.

Once the CPU has decided to take the interrupt, the program counter and PSW
are typically then pushed onto the current stack and the CPU switched into kernel
mode. The device number may be used as an index into part of memory to find the
address of the interrupt handler for this device. This part of memory is called the
interrupt vector. Once the interrupt handler (part of the driver for the interrupting
device) has started, it removes the stacked program counter and PSW and saves
them, then queries the device to learn its status. When the handler is all finished, it
returns to the previously running user program to the first instruction that was not
yet executed. These steps are shown in Fig. 1-11(b).

The third method for doing I/O makes use of special hardware: a DMA
(Direct Memory Access) chip that can control the flow of bits between memory
and some controller without constant CPU intervention. The CPU sets up the
DMA chip, telling it how many bytes to transfer, the device and memory addresses
involved, and the direction, and lets it go. When the DMA chip is done, it causes
an interrupt, which is handled as described above. DMA and I/O hardware in gen-
eral will be discussed in more detail in Chap. 5.

Interrupts can (and often do) happen at highly inconvenient moments, for ex-
ample, while another interrupt handler is running. For this reason, the CPU has a
way to disable interrupts and then reenable them later. While interrupts are dis-
abled, any devices that finish continue to assert their interrupt signals, but the CPU
is not interrupted until interrupts are enabled again. If multiple devices finish
while interrupts are disabled, the interrupt controller decides which one to let
through first, usually based on static priorities assigned to each device. The
highest-priority device wins and gets to be serviced first. The others must wait.

32 INTRODUCTION CHAP. 1

1.3.5 Buses

The organization of Fig. 1-6 was used on minicomputers for years and also on
the original IBM PC. However, as processors and memories got faster, the ability
of a single bus (and certainly the IBM PC bus) to handle all the traffic was strained
to the breaking point. Something had to give. As a result, additional buses were
added, both for faster I/O devices and for CPU-to-memory traffic. As a conse-
quence of this evolution, a large x86 system currently looks something like
Fig. 1-12.

Corel Core2
Cache | [Cache
| Sharedcache |
PCI -
[GPUCoes -2
[DDR3 Memory ———{ Memory controllers |H DDR3 Memory
DMI
PCle slot SATA
PCle slot Platform USB 2.0 ports
Controller
PCle slot Hub USB 3.0 ports
| PCleslot |
PCle slot FCle Gigabit Ethernet

More PCle devices

Figure 1-12. The structure of a large x86 system.

This system has many buses (e.g., cache, memory, PCle, PCI, USB, SATA, and
DMI), each with a different transfer rate and function. The operating system must
be aware of all of them for configuration and management. The main bus is the
PCle (Peripheral Component Interconnect Express) bus.

The PCle bus was invented by Intel as a successor to the older PCI bus, which
in turn was a replacement for the original ISA (Industry Standard Architecture)
bus. Capable of transferring tens of gigabits per second, PCle is much faster than
its predecessors. It is also very different in nature. Up to its creation in 2004, most
buses were parallel and shared. A shared bus architecture means that multiple de-
vices use the same wires to transfer data. Thus, when multiple devices have data to
send, you need an arbiter to determine who can use the bus. In contrast, PCle
makes use of dedicated, point-to-point connections. A parallel bus architecture as
used in traditional PCI means that you send each word of data over multiple wires.
For instance, in regular PCI buses, a single 32-bit number is sent over 32 parallel
wires. In contrast to this, PCle uses a serial bus architecture and sends all bits in

SEC. 1.3 COMPUTER HARDWARE REVIEW 33

a message through a single connection, known as a lane, much like a network
packet. This is much simpler, because you do not have to ensure that all 32 bits
arrive at the destination at exactly the same time. Parallelism is still used, because
you can have multiple lanes in parallel. For instance, we may use 32 lanes to carry
32 messages in parallel. As the speed of peripheral devices like network cards and
graphics adapters increases rapidly, the PCle standard is upgraded every 3-5 years.
For instance, 16 lanes of PCle 2.0 offer 64 gigabits per second. Upgrading to PCle
3.0 will give you twice that speed and PCle 4.0 will double that again.

Meanwhile, we still have many legacy devices for the older PCI standard. As
we see in Fig. 1-12, these devices are hooked up to a separate hub processor. In
the future, when we consider PCI no longer merely old, but ancient, it is possible
that all PCI devices will attach to yet another hub that in turn connects them to the
main hub, creating a tree of buses.

In this configuration, the CPU talks to memory over a fast DDR3 bus, to an ex-
ternal graphics device over PCle and to all other devices via a hub over a DMI
(Direct Media Interface) bus. The hub in turn connects all the other devices,
using the Universal Serial Bus to talk to USB devices, the SATA bus to interact
with hard disks and DVD drives, and PCle to transfer Ethernet frames. We have al-
ready mentioned the older PCI devices that use a traditional PCI bus.

Moreover, each of the cores has a dedicated cache and a much larger cache that
is shared between them. Each of these caches introduces another bus.

The USB (Universal Serial Bus) was invented to attach all the slow I/O de-
vices, such as the keyboard and mouse, to the computer. However, calling a mod-
ern USB 3.0 device humming along at 5 Gbps “slow” may not come naturally for
the generation that grew up with 8-Mbps ISA as the main bus in the first IBM PCs.
USB uses a small connector with four to eleven wires (depending on the version),
some of which supply electrical power to the USB devices or connect to ground.
USB is a centralized bus in which a root device polls all the I/O devices every 1
msec to see if they have any traffic. USB 1.0 could handle an aggregate load of 12
Mbps, USB 2.0 increased the speed to 480 Mbps, and USB 3.0 tops at no less than
5 Gbps. Any USB device can be connected to a computer and it will function im-
mediately, without requiring a reboot, something pre-USB devices required, much
to the consternation of a generation of frustrated users.

The SCSI (Small Computer System Interface) bus is a high-performance bus
intended for fast disks, scanners, and other devices needing considerable band-
width. Nowadays, we find them mostly in servers and workstations. They can run
at up to 640 MB/sec.

To work in an environment such as that of Fig. 1-12, the operating system has
to know what peripheral devices are connected to the computer and configure
them. This requirement led Intel and Microsoft to design a PC system called plug
and play, based on a similar concept first implemented in the Apple Macintosh.
Before plug and play, each I/O card had a fixed interrupt request level and fixed ad-
dresses for its I/O registers. For example, the keyboard was interrupt 1 and used

34 INTRODUCTION CHAP. 1

I/O addresses 0x60 to 0x64, the floppy disk controller was interrupt 6 and used 1/O
addresses 0x3FO0 to 0x3F7, and the printer was interrupt 7 and used 1/O addresses
0x378 to 0x37A, and so on.

So far, so good. The trouble came in when the user bought a sound card and a
modem card and both happened to use, say, interrupt 4. They would conflict and
would not work together. The solution was to include DIP switches or jumpers on
every I/O card and instruct the user to please set them to select an interrupt level
and I/O device addresses that did not conflict with any others in the user’s system.
Teenagers who devoted their lives to the intricacies of the PC hardware could
sometimes do this without making errors. Unfortunately, nobody else could, lead-
ing to chaos.

What plug and play does is have the system automatically collect information
about the I/O devices, centrally assign interrupt levels and I/O addresses, and then
tell each card what its numbers are. This work is closely related to booting the
computer, so let us look at that. It is not completely trivial.

1.3.6 Booting the Computer

Very briefly, the boot process is as follows. Every PC contains a parentboard
(formerly called a motherboard before political correctness hit the computer indus-
try). On the parentboard is a program called the system BIOS (Basic Input Out-
put System). The BIOS contains low-level I/O software, including procedures to
read the keyboard, write to the screen, and do disk I/O, among other things. Now-
adays, it is held in a flash RAM, which is nonvolatile but which can be updated by
the operating system when bugs are found in the BIOS.

When the computer is booted, the BIOS is started. It first checks to see how
much RAM is installed and whether the keyboard and other basic devices are in-
stalled and responding correctly. It starts out by scanning the PCle and PCI buses
to detect all the devices attached to them. If the devices present are different from
when the system was last booted, the new devices are configured.

The BIOS then determines the boot device by trying a list of devices stored in
the CMOS memory. The user can change this list by entering a BIOS configuration
program just after booting. Typically, an attempt is made to boot from a CD-ROM
(or sometimes USB) drive, if one is present. If that fails, the system boots from the
hard disk. The first sector from the boot device is read into memory and executed.
This sector contains a program that normally examines the partition table at the
end of the boot sector to determine which partition is active. Then a secondary boot
loader is read in from that partition. This loader reads in the operating system
from the active partition and starts it.

The operating system then queries the BIOS to get the configuration infor-
mation. For each device, it checks to see if it has the device driver. If not, it asks
the user to insert a CD-ROM containing the driver (supplied by the device’s manu-
facturer) or to download it from the Internet. Once it has all the device drivers, the

SEC. 1.3 COMPUTER HARDWARE REVIEW 35

operating system loads them into the kernel. Then it initializes its tables, creates
whatever background processes are needed, and starts up a login program or GUI.

1.4 THE OPERATING SYSTEM ZOO

Operating systems have been around now for over half a century. During this
time, quite a variety of them have been developed, not all of them widely known.
In this section we will briefly touch upon nine of them. We will come back to
some of these different kinds of systems later in the book.

14.1 Mainframe Operating Systems

At the high end are the operating systems for mainframes, those room-sized
computers still found in major corporate data centers. These computers differ from
personal computers in terms of their I/O capacity. A mainframe with 1000 disks
and millions of gigabytes of data is not unusual; a personal computer with these
specifications would be the envy of its friends. Mainframes are also making some-
thing of a comeback as high-end Web servers, servers for large-scale electronic
commerce sites, and servers for business-to-business transactions.

The operating systems for mainframes are heavily oriented toward processing
many jobs at once, most of which need prodigious amounts of I/0. They typically
offer three kinds of services: batch, transaction processing, and timesharing. A
batch system is one that processes routine jobs without any interactive user present.
Claims processing in an insurance company or sales reporting for a chain of stores
is typically done in batch mode. Transaction-processing systems handle large num-
bers of small requests, for example, check processing at a bank or airline reserva-
tions. Each unit of work is small, but the system must handle hundreds or thou-
sands per second. Timesharing systems allow multiple remote users to run jobs on
the computer at once, such as querying a big database. These functions are closely
related; mainframe operating systems often perform all of them. An example
mainframe operating system is OS/390, a descendant of OS/360. However, main-
frame operating systems are gradually being replaced by UNIX variants such as
Linux.

1.4.2 Server Operating Systems

One level down are the server operating systems. They run on servers, which
are either very large personal computers, workstations, or even mainframes. They
serve multiple users at once over a network and allow the users to share hardware
and software resources. Servers can provide print service, file service, or Web

36 INTRODUCTION CHAP. 1

service. Internet providers run many server machines to support their customers
and Websites use servers to store the Web pages and handle the incoming requests.
Typical server operating systems are Solaris, FreeBSD, Linux and Windows Server
201x.

1.4.3 Multiprocessor Operating Systems

An increasingly common way to get major-league computing power is to con-
nect multiple CPUs into a single system. Depending on precisely how they are
connected and what is shared, these systems are called parallel computers, multi-
computers, or multiprocessors. They need special operating systems, but often
these are variations on the server operating systems, with special features for com-
munication, connectivity, and consistency.

With the recent advent of multicore chips for personal computers, even
conventional desktop and notebook operating systems are starting to deal with at
least small-scale multiprocessors and the number of cores is likely to grow over
time. Luckily, quite a bit is known about multiprocessor operating systems from
years of previous research, so using this knowledge in multicore systems should
not be hard. The hard part will be having applications make use of all this comput-
ing power. Many popular operating systems, including Windows and Linux, run
on multiprocessors.

1.4.4 Personal Computer Operating Systems

The next category is the personal computer operating system. Modern ones all
support multiprogramming, often with dozens of programs started up at boot time.
Their job is to provide good support to a single user. They are widely used for
word processing, spreadsheets, games, and Internet access. Common examples are
Linux, FreeBSD, Windows 7, Windows 8, and Apple’s OS X. Personal computer
operating systems are so widely known that probably little introduction is needed.
In fact, many people are not even aware that other kinds exist.

1.4.5 Handheld Computer Operating Systems

Continuing on down to smaller and smaller systems, we come to tablets,
smartphones and other handheld computers. A handheld computer, originally
known as a PDA (Personal Digital Assistant), is a small computer that can be
held in your hand during operation. Smartphones and tablets are the best-known
examples. As we have already seen, this market is currently dominated by
Google’s Android and Apple’s iOS, but they have many competitors. Most of these
devices boast multicore CPUs, GPS, cameras and other sensors, copious amounts
of memory, and sophisticated operating systems. Moreover, all of them have more
third-party applications (“apps”) than you can shake a (USB) stick at.

SEC. 14 THE OPERATING SYSTEM ZOO 37

14.6 Embedded Operating Systems

Embedded systems run on the computers that control devices that are not gen-
erally thought of as computers and which do not accept user-installed software.
Typical examples are microwave ovens, TV sets, cars, DVD recorders, traditional
phones, and MP3 players. The main property which distinguishes embedded sys-
tems from handhelds is the certainty that no untrusted software will ever run on it.
You cannot download new applications to your microwave oven—all the software
is in ROM. This means that there is no need for protection between applications,
leading to design simplification. Systems such as Embedded Linux, QNX and
VxWorks are popular in this domain.

14.7 Sensor-Node Operating Systems

Networks of tiny sensor nodes are being deployed for numerous purposes.
These nodes are tiny computers that communicate with each other and with a base
station using wireless communication. Sensor networks are used to protect the
perimeters of buildings, guard national borders, detect fires in forests, measure
temperature and precipitation for weather forecasting, glean information about
enemy movements on battlefields, and much more.

The sensors are small battery-powered computers with built-in radios. They
have limited power and must work for long periods of time unattended outdoors,
frequently in environmentally harsh conditions. The network must be robust
enough to tolerate failures of individual nodes, which happen with ever-increasing
frequency as the batteries begin to run down.

Each sensor node is a real computer, with a CPU, RAM, ROM, and one or
more environmental sensors. It runs a small, but real operating system, usually one
that is event driven, responding to external events or making measurements period-
ically based on an internal clock. The operating system has to be small and simple
because the nodes have little RAM and battery lifetime is a major issue. Also, as
with embedded systems, all the programs are loaded in advance; users do not sud-
denly start programs they downloaded from the Internet, which makes the design
much simpler. TinyOS is a well-known operating system for a sensor node.

1.4.8 Real-Time Operating Systems

Another type of operating system is the real-time system. These systems are
characterized by having time as a key parameter. For example, in industrial proc-
ess-control systems, real-time computers have to collect data about the production
process and use it to control machines in the factory. Often there are hard deadlines
that must be met. For example, if a car is moving down an assembly line, certain
actions must take place at certain instants of time. If, for example, a welding robot
welds too early or too late, the car will be ruined. If the action absolutely must

38 INTRODUCTION CHAP. 1

occur at a certain moment (or within a certain range), we have a hard real-time
system. Many of these are found in industrial process control, avionics, military,
and similar application areas. These systems must provide absolute guarantees that
a certain action will occur by a certain time.

A soft real-time system, is one where missing an occasional deadline, while
not desirable, is acceptable and does not cause any permanent damage. Digital
audio or multimedia systems fall in this category. Smartphones are also soft real-
time systems.

Since meeting deadlines is crucial in (hard) real-time systems, sometimes the
operating system is simply a library linked in with the application programs, with
everything tightly coupled and no protection between parts of the system. An ex-
ample of this type of real-time system is eCos.

The categories of handhelds, embedded systems, and real-time systems overlap
considerably. Nearly all of them have at least some soft real-time aspects. The em-
bedded and real-time systems run only software put in by the system designers;
users cannot add their own software, which makes protection easier. The handhelds
and embedded systems are intended for consumers, whereas real-time systems are
more for industrial usage. Nevertheless, they have a certain amount in common.

1.4.9 Smart Card Operating Systems

The smallest operating systems run on smart cards, which are credit-card-sized
devices containing a CPU chip. They have very severe processing power and mem-
ory constraints. Some are powered by contacts in the reader into which they are
inserted, but contactless smart cards are inductively powered, which greatly limits
what they can do. Some of them can handle only a single function, such as elec-
tronic payments, but others can handle multiple functions. Often these are propri-
etary systems.

Some smart cards are Java oriented. This means that the ROM on the smart
card holds an interpreter for the Java Virtual Machine (JVM). Java applets (small
programs) are downloaded to the card and are interpreted by the JVM interpreter.
Some of these cards can handle multiple Java applets at the same time, leading to
multiprogramming and the need to schedule them. Resource management and pro-
tection also become an issue when two or more applets are present at the same
time. These issues must be handled by the (usually extremely primitive) operating
system present on the card.

1.5 OPERATING SYSTEM CONCEPTS

Most operating systems provide certain basic concepts and abstractions such as
processes, address spaces, and files that are central to understanding them. In the
following sections, we will look at some of these basic concepts ever so briefly, as

SEC. 1.5 OPERATING SYSTEM CONCEPTS 39

an introduction. We will come back to each of them in great detail later in this
book. To illustrate these concepts we will, from time to time, use examples, gener-
ally drawn from UNIX. Similar examples typically exist in other systems as well,
however, and we will study some of them later.

1.5.1 Processes

A key concept in all operating systems is the process. A process is basically a
program in execution. Associated with each process is its address space, a list of
memory locations from 0 to some maximum, which the process can read and write.
The address space contains the executable program, the program’s data, and its
stack. Also associated with each process is a set of resources, commonly including
registers (including the program counter and stack pointer), a list of open files, out-
standing alarms, lists of related processes, and all the other information needed to
run the program. A process is fundamentally a container that holds all the infor-
mation needed to run a program.

We will come back to the process concept in much more detail in Chap. 2. For
the time being, the easiest way to get a good intuitive feel for a process is to think
about a multiprogramming system. The user may have started a video editing pro-
gram and instructed it to convert a one-hour video to a certain format (something
that can take hours) and then gone off to surf the Web. Meanwhile, a background
process that wakes up periodically to check for incoming email may have started
running. Thus we have (at least) three active processes: the video editor, the Web
browser, and the email receiver. Periodically, the operating system decides to stop
running one process and start running another, perhaps because the first one has
used up more than its share of CPU time in the past second or two.

When a process is suspended temporarily like this, it must later be restarted in
exactly the same state it had when it was stopped. This means that all information
about the process must be explicitly saved somewhere during the suspension. For
example, the process may have several files open for reading at once. Associated
with each of these files is a pointer giving the current position (i.e., the number of
the byte or record to be read next). When a process is temporarily suspended, all
these pointers must be saved so that a read call executed after the process is restart-
ed will read the proper data. In many operating systems, all the information about
each process, other than the contents of its own address space, is stored in an oper-
ating system table called the process table, which is an array of structures, one for
each process currently in existence.

Thus, a (suspended) process consists of its address space, usually called the
core image (in honor of the magnetic core memories used in days of yore), and its
process table entry, which contains the contents of its registers and many other
items needed to restart the process later.

The key process-management system calls are those dealing with the creation
and termination of processes. Consider a typical example. A process called the
command interpreter or shell reads commands from a terminal. The user has just

40 INTRODUCTION CHAP. 1

typed a command requesting that a program be compiled. The shell must now cre-
ate a new process that will run the compiler. When that process has finished the
compilation, it executes a system call to terminate itself.

If a process can create one or more other processes (referred to as child pro-
cesses) and these processes in turn can create child processes, we quickly arrive at
the process tree structure of Fig. 1-13. Related processes that are cooperating to
get some job done often need to communicate with one another and synchronize
their activities. This communication is called interprocess communication, and
will be addressed in detail in Chap. 2.

Figure 1-13. A process tree. Process A created two child processes, B and C.
Process B created three child processes, D, E, and F.

Other process system calls are available to request more memory (or release
unused memory), wait for a child process to terminate, and overlay its program
with a different one.

Occasionally, there is a need to convey information to a running process that is
not sitting around waiting for this information. For example, a process that is com-
municating with another process on a different computer does so by sending mes-
sages to the remote process over a computer network. To guard against the possi-
bility that a message or its reply is lost, the sender may request that its own operat-
ing system notify it after a specified number of seconds, so that it can retransmit
the message if no acknowledgement has been received yet. After setting this timer,
the program may continue doing other work.

When the specified number of seconds has elapsed, the operating system sends
an alarm signal to the process. The signal causes the process to temporarily sus-
pend whatever it was doing, save its registers on the stack, and start running a spe-
cial signal-handling procedure, for example, to retransmit a presumably lost mes-
sage. When the signal handler is done, the running process is restarted in the state
it was in just before the signal. Signals are the software analog of hardware inter-
rupts and can be generated by a variety of causes in addition to timers expiring.
Many traps detected by hardware, such as executing an illegal instruction or using
an invalid address, are also converted into signals to the guilty process.

Each person authorized to use a system is assigned a UID (User IDentifica-
tion) by the system administrator. Every process started has the UID of the person
who started it. A child process has the same UID as its parent. Users can be mem-
bers of groups, each of which has a GID (Group IDentification).

SEC. 15 OPERATING SYSTEM CONCEPTS 41

One UID, called the superuser (in UNIX), or Administrator (in Windows),
has special power and may override many of the protection rules. In large in-
stallations, only the system administrator knows the password needed to become
superuser, but many of the ordinary users (especially students) devote considerable
effort seeking flaws in the system that allow them to become superuser without the
password.

We will study processes and interprocess communication in Chap. 2.

1.5.2 Address Spaces

Every computer has some main memory that it uses to hold executing pro-
grams. In a very simple operating system, only one program at a time is in memo-
ry. To run a second program, the first one has to be removed and the second one
placed in memory.

More sophisticated operating systems allow multiple programs to be in memo-
ry at the same time. To keep them from interfering with one another (and with the
operating system), some kind of protection mechanism is needed. While this mech-
anism has to be in the hardware, it is controlled by the operating system.

The above viewpoint is concerned with managing and protecting the com-
puter’s main memory. A different, but equally important, memory-related issue is
managing the address space of the processes. Normally, each process has some set
of addresses it can use, typically running from 0 up to some maximum. In the sim-
plest case, the maximum amount of address space a process has is less than the
main memory. In this way, a process can fill up its address space and there will be
enough room in main memory to hold it all.

However, on many computers addresses are 32 or 64 bits, giving an address
space of 2% or 2% bytes, respectively. What happens if a process has more address
space than the computer has main memory and the process wants to use it all? In
the first computers, such a process was just out of luck. Nowadays, a technique cal-
led virtual memory exists, as mentioned earlier, in which the operating system
keeps part of the address space in main memory and part on disk and shuttles
pieces back and forth between them as needed. In essence, the operating system
creates the abstraction of an address space as the set of addresses a process may
reference. The address space is decoupled from the machine’s physical memory
and may be either larger or smaller than the physical memory. Management of ad-
dress spaces and physical memory form an important part of what an operating
system does, so all of Chap. 3 is devoted to this topic.

1.5.3 Files

Another key concept supported by virtually all operating systems is the file
system. As noted before, a major function of the operating system is to hide the
peculiarities of the disks and other I/O devices and present the programmer with a

42 INTRODUCTION CHAP. 1

nice, clean abstract model of device-independent files. System calls are obviously
needed to create files, remove files, read files, and write files. Before a file can be
read, it must be located on the disk and opened, and after being read it should be
closed, so calls are provided to do these things.

To provide a place to keep files, most PC operating systems have the concept
of a directory as a way of grouping files together. A student, for example, might
have one directory for each course he is taking (for the programs needed for that
course), another directory for his electronic mail, and still another directory for his
World Wide Web home page. System calls are then needed to create and remove
directories. Calls are also provided to put an existing file in a directory and to re-
move a file from a directory. Directory entries may be either files or other direc-
tories. This model also gives rise to a hierarchy —the file system—as shown in
Fig. 1-14.

Root directory

~

Students Faculty

Robbert Matty Leo Prof.Brown Prof.Green Prof.White

7/

/

TN 7\

Y RN
Courses Papers Grants Committees

/ \

\

]
/
/
/

IV

<

CS101 CS105 SOSP COST-11

Figure 1-14. A file system for a university department.

The process and file hierarchies both are organized as trees, but the similarity
stops there. Process hierarchies usually are not very deep (more than three levels is
unusual), whereas file hierarchies are commonly four, five, or even more levels
deep. Process hierarchies are typically short-lived, generally minutes at most,
whereas the directory hierarchy may exist for years. Ownership and protection also
differ for processes and files. Typically, only a parent process may control or even

SEC. 1.5 OPERATING SYSTEM CONCEPTS 43

access a child process, but mechanisms nearly always exist to allow files and direc-
tories to be read by a wider group than just the owner.

Every file within the directory hierarchy can be specified by giving its path
name from the top of the directory hierarchy, the root directory. Such absolute
path names consist of the list of directories that must be traversed from the root di-
rectory to get to the file, with slashes separating the components. In Fig. 1-14, the
path for file CS101 is /Faculty/Prof.Brown/Courses/CS101. The leading slash indi-
cates that the path is absolute, that is, starting at the root directory. As an aside, in
Windows, the backslash (\) character is used as the separator instead of the slash (/)
character (for historical reasons), so the file path given above would be written as
\Faculty\Prof.Brown\Courses\CS101. Throughout this book we will generally use
the UNIX convention for paths.

At every instant, each process has a current working directory, in which path
names not beginning with a slash are looked for. For example, in Fig. 1-14, if
/Faculty/Prof.Brown were the working directory, use of the path Courses/CSI101
would yield the same file as the absolute path name given above. Processes can
change their working directory by issuing a system call specifying the new work-
ing directory.

Before a file can be read or written, it must be opened, at which time the per-
missions are checked. If the access is permitted, the system returns a small integer
called a file descriptor to use in subsequent operations. If the access is prohibited,
an error code is returned.

Another important concept in UNIX is the mounted file system. Most desktop
computers have one or more optical drives into which CD-ROMs, DVDs, and Blu-
ray discs can be inserted. They almost always have USB ports, into which USB
memory sticks (really, solid state disk drives) can be plugged, and some computers
have floppy disks or external hard disks. To provide an elegant way to deal with
these removable media UNIX allows the file system on the optical disc to be at-
tached to the main tree. Consider the situation of Fig. 1-15(a). Before the mount
call, the root file system, on the hard disk, and a second file system, on a CD-
ROM, are separate and unrelated.

However, the file system on the CD-ROM cannot be used, because there is no
way to specify path names on it. UNIX does not allow path names to be prefixed
by a drive name or number; that would be precisely the kind of device dependence
that operating systems ought to eliminate. Instead, the mount system call allows
the file system on the CD-ROM to be attached to the root file system wherever the
program wants it to be. In Fig. 1-15(b) the file system on the CD-ROM has been
mounted on directory b, thus allowing access to files /b/x and /b/y. If directory b
had contained any files they would not be accessible while the CD-ROM was
mounted, since /b would refer to the root directory of the CD-ROM. (Not being
able to access these files is not as serious as it at first seems: file systems are nearly
always mounted on empty directories.) If a system contains multiple hard disks,
they can all be mounted into a single tree as well.

44 INTRODUCTION CHAP. 1

Root CD-ROM

(a) (b)

Figure 1-15. (a) Before mounting, the files on the CD-ROM are not accessible.
(b) After mounting, they are part of the file hierarchy.

Another important concept in UNIX is the special file. Special files are pro-
vided in order to make I/O devices look like files. That way, they can be read and
written using the same system calls as are used for reading and writing files. Two
kinds of special files exist: block special files and character special files. Block
special files are used to model devices that consist of a collection of randomly ad-
dressable blocks, such as disks. By opening a block special file and reading, say,
block 4, a program can directly access the fourth block on the device, without
regard to the structure of the file system contained on it. Similarly, character spe-
cial files are used to model printers, modems, and other devices that accept or out-
put a character stream. By convention, the special files are kept in the /dev direc-
tory. For example, /dev/Ip might be the printer (once called the line printer).

The last feature we will discuss in this overview relates to both processes and
files: pipes. A pipe is a sort of pseudofile that can be used to connect two proc-
esses, as shown in Fig. 1-16. If processes A and B wish to talk using a pipe, they
must set it up in advance. When process A wants to send data to process B, it writes
on the pipe as though it were an output file. In fact, the implementation of a pipe is
very much like that of a file. Process B can read the data by reading from the pipe
as though it were an input file. Thus, communication between processes in UNIX
looks very much like ordinary file reads and writes. Stronger yet, the only way a
process can discover that the output file it is writing on is not really a file, but a
pipe, is by making a special system call. File systems are very important. We will
have much more to say about them in Chap. 4 and also in Chaps. 10 and 11.

Process Process
° = °
]

Figure 1-16. Two processes connected by a pipe.

SEC. 1.5 OPERATING SYSTEM CONCEPTS 45

1.5.4 Input/Output

All computers have physical devices for acquiring input and producing output.
After all, what good would a computer be if the users could not tell it what to do
and could not get the results after it did the work requested? Many kinds of input
and output devices exist, including keyboards, monitors, printers, and so on. It is
up to the operating system to manage these devices.

Consequently, every operating system has an I/O subsystem for managing its
I/O devices. Some of the I/O software is device independent, that is, applies to
many or all I/O devices equally well. Other parts of it, such as device drivers, are
specific to particular I/O devices. In Chap. 5 we will have a look at I/O software.

1.5.5 Protection

Computers contain large amounts of information that users often want to pro-
tect and keep confidential. This information may include email, business plans, tax
returns, and much more. It is up to the operating system to manage the system se-
curity so that files, for example, are accessible only to authorized users.

As a simple example, just to get an idea of how security can work, consider
UNIX. Files in UNIX are protected by assigning each one a 9-bit binary protec-
tion code. The protection code consists of three 3-bit fields, one for the owner, one
for other members of the owner’s group (users are divided into groups by the sys-
tem administrator), and one for everyone else. Each field has a bit for read access,
a bit for write access, and a bit for execute access. These 3 bits are known as the
rwx bits. For example, the protection code rwxr-x--x means that the owner can
read, write, or execute the file, other group members can read or execute (but not
write) the file, and everyone else can execute (but not read or write) the file. For a
directory, x indicates search permission. A dash means that the corresponding per-
mission is absent.

In addition to file protection, there are many other security issues. Protecting
the system from unwanted intruders, both human and nonhuman (e.g., viruses) is
one of them. We will look at various security issues in Chap. 9.

1.5.6 The Shell

The operating system is the code that carries out the system calls. Editors,
compilers, assemblers, linkers, utility programs, and command interpreters defi-
nitely are not part of the operating system, even though they are important and use-
ful. At the risk of confusing things somewhat, in this section we will look briefly
at the UNIX command interpreter, the shell. Although it is not part of the operat-
ing system, it makes heavy use of many operating system features and thus serves
as a good example of how the system calls are used. It is also the main interface

46 INTRODUCTION CHAP. 1

between a user sitting at his terminal and the operating system, unless the user is
using a graphical user interface. Many shells exist, including sk, csh, ksh, and bash.
All of them support the functionality described below, which derives from the orig-
inal shell (sh).

When any user logs in, a shell is started up. The shell has the terminal as stan-
dard input and standard output. It starts out by typing the prompt, a character
such as a dollar sign, which tells the user that the shell is waiting to accept a com-
mand. If the user now types

date

for example, the shell creates a child process and runs the date program as the
child. While the child process is running, the shell waits for it to terminate. When
the child finishes, the shell types the prompt again and tries to read the next input
line.

The user can specify that standard output be redirected to a file, for example,

date >file
Similarly, standard input can be redirected, as in
sort <file1 >file2

which invokes the sort program with input taken from file/ and output sent to file2.
The output of one program can be used as the input for another program by
connecting them with a pipe. Thus

cat file1 file2 file3 | sort >/dev/Ip

invokes the cat program to concatenate three files and send the output to sort to
arrange all the lines in alphabetical order. The output of sort is redirected to the file
/dev/lp, typically the printer.

If a user puts an ampersand after a command, the shell does not wait for it to
complete. Instead it just gives a prompt immediately. Consequently,

cat file1 file2 file3 | sort >/dev/Ip &

starts up the sort as a background job, allowing the user to continue working nor-
mally while the sort is going on. The shell has a number of other interesting fea-
tures, which we do not have space to discuss here. Most books on UNIX discuss
the shell at some length (e.g., Kernighan and Pike, 1984; Quigley, 2004; Robbins,
2005).

Most personal computers these days use a GUI. In fact, the GUI is just a pro-
gram running on top of the operating system, like a shell. In Linux systems, this
fact is made obvious because the user has a choice of (at least) two GUIs: Gnome
and KDE or none at all (using a terminal window on X11). In Windows, it is also
possible to replace the standard GUI desktop (Windows Explorer) with a different
program by changing some values in the registry, although few people do this.

SEC. 1.5 OPERATING SYSTEM CONCEPTS 47
1.5.7 Ontogeny Recapitulates Phylogeny

After Charles Darwin’s book On the Origin of the Species was published, the
German zoologist Ernst Haeckel stated that “ontogeny recapitulates phylogeny.”
By this he meant that the development of an embryo (ontogeny) repeats (i.e., reca-
pitulates) the evolution of the species (phylogeny). In other words, after fertiliza-
tion, a human egg goes through stages of being a fish, a pig, and so on before turn-
ing into a human baby. Modern biologists regard this as a gross simplification, but
it still has a kernel of truth in it.

Something vaguely analogous has happened in the computer industry. Each
new species (mainframe, minicomputer, personal computer, handheld, embedded
computer, smart card, etc.) seems to go through the development that its ancestors
did, both in hardware and in software. We often forget that much of what happens
in the computer business and a lot of other fields is technology driven. The reason
the ancient Romans lacked cars is not that they liked walking so much. It is be-
cause they did not know how to build cars. Personal computers exist not because
millions of people have a centuries-old pent-up desire to own a computer, but be-
cause it is now possible to manufacture them cheaply. We often forget how much
technology affects our view of systems and it is worth reflecting on this point from
time to time.

In particular, it frequently happens that a change in technology renders some
idea obsolete and it quickly vanishes. However, another change in technology
could revive it again. This is especially true when the change has to do with the
relative performance of different parts of the system. For instance, when CPUs
became much faster than memories, caches became important to speed up the
“slow” memory. If new memory technology someday makes memories much
faster than CPUs, caches will vanish. And if a new CPU technology makes them
faster than memories again, caches will reappear. In biology, extinction is forever,
but in computer science, it is sometimes only for a few years.

As a consequence of this impermanence, in this book we will from time to
time look at “obsolete” concepts, that is, ideas that are not optimal with current
technology. However, changes in the technology may bring back some of the
so-called ‘““obsolete concepts.” For this reason, it is important to understand why a
concept is obsolete and what changes in the environment might bring it back again.

To make this point clearer, let us consider a simple example. Early computers
had hardwired instruction sets. The instructions were executed directly by hard-
ware and could not be changed. Then came microprogramming (first introduced on
a large scale with the IBM 360), in which an underlying interpreter carried out the
“hardware instructions” in software. Hardwired execution became obsolete. It
was not flexible enough. Then RISC computers were invented, and micropro-
gramming (i.e., interpreted execution) became obsolete because direct execution
was faster. Now we are seeing the resurgence of interpretation in the form of Java
applets that are sent over the Internet and interpreted upon arrival. Execution speed

48 INTRODUCTION CHAP. 1

is not always crucial because network delays are so great that they tend to domi-
nate. Thus the pendulum has already swung several cycles between direct execu-
tion and interpretation and may yet swing again in the future.

Large Memories

Let us now examine some historical developments in hardware and how they
have affected software repeatedly. The first mainframes had limited memory. A
fully loaded IBM 7090 or 7094, which played king of the mountain from late 1959
until 1964, had just over 128 KB of memory. It was mostly programmed in assem-
bly language and its operating system was written in assembly language to save
precious memory.

As time went on, compilers for languages like FORTRAN and COBOL got
good enough that assembly language was pronounced dead. But when the first
commercial minicomputer (the PDP-1) was released, it had only 4096 18-bit words
of memory, and assembly language made a surprise comeback. Eventually, mini-
computers acquired more memory and high-level languages became prevalent on
them.

When microcomputers hit in the early 1980s, the first ones had 4-KB memo-
ries and assembly-language programming rose from the dead. Embedded com-
puters often used the same CPU chips as the microcomputers (8080s, Z80s, and
later 8086s) and were also programmed in assembler initially. Now their descen-
dants, the personal computers, have lots of memory and are programmed in C,
C++, Java, and other high-level languages. Smart cards are undergoing a similar
development, although beyond a certain size, the smart cards often have a Java
interpreter and execute Java programs interpretively, rather than having Java being
compiled to the smart card’s machine language.

Protection Hardware

Early mainframes, like the IBM 7090/7094, had no protection hardware, so
they just ran one program at a time. A buggy program could wipe out the operat-
ing system and easily crash the machine. With the introduction of the IBM 360, a
primitive form of hardware protection became available. These machines could
then hold several programs in memory at the same time and let them take turns
running (multiprogramming). Monoprogramming was declared obsolete.

At least until the first minicomputer showed up—without protection hard-
ware—so multiprogramming was not possible. Although the PDP-1 and PDP-8
had no protection hardware, eventually the PDP-11 did, and this feature led to mul-
tiprogramming and eventually to UNIX.

When the first microcomputers were built, they used the Intel 8080 CPU chip,
which had no hardware protection, so we were back to monoprogramming —one
program in memory at a time. It was not until the Intel 80286 chip that protection

SEC. 1.5 OPERATING SYSTEM CONCEPTS 49

hardware was added and multiprogramming became possible. Until this day, many
embedded systems have no protection hardware and run just a single program.

Now let us look at operating systems. The first mainframes initially had no
protection hardware and no support for multiprogramming, so they ran simple op-
erating systems that handled one manually loaded program at a time. Later they ac-
quired the hardware and operating system support to handle multiple programs at
once, and then full timesharing capabilities.

When minicomputers first appeared, they also had no protection hardware and
ran one manually loaded program at a time, even though multiprogramming was
well established in the mainframe world by then. Gradually, they acquired protec-
tion hardware and the ability to run two or more programs at once. The first
microcomputers were also capable of running only one program at a time, but later
acquired the ability to multiprogram. Handheld computers and smart cards went
the same route.

In all cases, the software development was dictated by technology. The first
microcomputers, for example, had something like 4 KB of memory and no protec-
tion hardware. High-level languages and multiprogramming were simply too much
for such a tiny system to handle. As the microcomputers evolved into modern per-
sonal computers, they acquired the necessary hardware and then the necessary soft-
ware to handle more advanced features. It is likely that this development will con-
tinue for years to come. Other fields may also have this wheel of reincarnation, but
in the computer industry it seems to spin faster.

Disks

Early mainframes were largely magnetic-tape based. They would read in a pro-
gram from tape, compile it, run it, and write the results back to another tape. There
were no disks and no concept of a file system. That began to change when IBM
introduced the first hard disk—the RAMAC (RAndoM ACcess) in 1956. It occu-
pied about 4 square meters of floor space and could store 5 million 7-bit charac-
ters, enough for one medium-resolution digital photo. But with an annual rental fee
of $35,000, assembling enough of them to store the equivalent of a roll of film got
pricey quite fast. But eventually prices came down and primitive file systems were
developed.

Typical of these new developments was the CDC 6600, introduced in 1964 and
for years by far the fastest computer in the world. Users could create so-called
“permanent files” by giving them names and hoping that no other user had also
decided that, say, “data” was a suitable name for a file. This was a single-level di-
rectory. Eventually, mainframes developed complex hierarchical file systems, per-
haps culminating in the MULTICS file system.

As minicomputers came into use, they eventually also had hard disks. The
standard disk on the PDP-11 when it was introduced in 1970 was the RKO05 disk,
with a capacity of 2.5 MB, about half of the IBM RAMAC, but it was only about

50 INTRODUCTION CHAP. 1

40 cm in diameter and 5 cm high. But it, too, had a single-level directory initially.
When microcomputers came out, CP/M was initially the dominant operating sys-
tem, and it, too, supported just one directory on the (floppy) disk.

Virtual Memory

Virtual memory (discussed in Chap. 3) gives the ability to run programs larger
than the machine’s physical memory by rapidly moving pieces back and forth be-
tween RAM and disk. It underwent a similar development, first appearing on
mainframes, then moving to the minis and the micros. Virtual memory also allow-
ed having a program dynamically link in a library at run time instead of having it
compiled in. MULTICS was the first system to allow this. Eventually, the idea
propagated down the line and is now widely used on most UNIX and Windows
systems.

In all these developments, we see ideas invented in one context and later
thrown out when the context changes (assembly-language programming, monopro-
gramming, single-level directories, etc.) only to reappear in a different context
often a decade later. For this reason in this book we will sometimes look at ideas
and algorithms that may seem dated on today’s gigabyte PCs, but which may soon
come back on embedded computers and smart cards.

1.6 SYSTEM CALLS

We have seen that operating systems have two main functions: providing
abstractions to user programs and managing the computer’s resources. For the most
part, the interaction between user programs and the operating system deals with the
former; for example, creating, writing, reading, and deleting files. The re-
source-management part is largely transparent to the users and done automatically.
Thus, the interface between user programs and the operating system is primarily
about dealing with the abstractions. To really understand what operating systems
do, we must examine this interface closely. The system calls available in the inter-
face vary from one operating system to another (although the underlying concepts
tend to be similar).

We are thus forced to make a choice between (1) vague generalities (““operat-
ing systems have system calls for reading files”) and (2) some specific system
(“UNIX has a read system call with three parameters: one to specify the file, one
to tell where the data are to be put, and one to tell how many bytes to read™).

We have chosen the latter approach. It’s more work that way, but it gives more
insight into what operating systems really do. Although this discussion specifically
refers to POSIX (International Standard 9945-1), hence also to UNIX, System V,
BSD, Linux, MINIX 3, and so on, most other modern operating systems have sys-
tem calls that perform the same functions, even if the details differ. Since the actual

SEC. 1.6 SYSTEM CALLS 51

mechanics of issuing a system call are highly machine dependent and often must
be expressed in assembly code, a procedure library is provided to make it possible
to make system calls from C programs and often from other languages as well.

It is useful to keep the following in mind. Any single-CPU computer can ex-
ecute only one instruction at a time. If a process is running a user program in user
mode and needs a system service, such as reading data from a file, it has to execute
a trap instruction to transfer control to the operating system. The operating system
then figures out what the calling process wants by inspecting the parameters. Then
it carries out the system call and returns control to the instruction following the
system call. In a sense, making a system call is like making a special kind of pro-
cedure call, only system calls enter the kernel and procedure calls do not.

To make the system-call mechanism clearer, let us take a quick look at the read
system call. As mentioned above, it has three parameters: the first one specifying
the file, the second one pointing to the buffer, and the third one giving the number
of bytes to read. Like nearly all system calls, it is invoked from C programs by cal-
ling a library procedure with the same name as the system call: read. A call from a
C program might look like this:

count = read(fd, buffer, nbytes);

The system call (and the library procedure) return the number of bytes actually
read in count. This value is normally the same as nbytes, but may be smaller, if,
for example, end-of-file is encountered while reading.

If the system call cannot be carried out owing to an invalid parameter or a disk
error, count is set to —1, and the error number is put in a global variable, errno.
Programs should always check the results of a system call to see if an error oc-
curred.

System calls are performed in a series of steps. To make this concept clearer,
let us examine the read call discussed above. In preparation for calling the read li-
brary procedure, which actually makes the read system call, the calling program
first pushes the parameters onto the stack, as shown in steps 1-3 in Fig. 1-17.

C and C++ compilers push the parameters onto the stack in reverse order for
historical reasons (having to do with making the first parameter to printf, the for-
mat string, appear on top of the stack). The first and third parameters are called by
value, but the second parameter is passed by reference, meaning that the address of
the buffer (indicated by &) is passed, not the contents of the buffer. Then comes the
actual call to the library procedure (step 4). This instruction is the normal proce-
dure-call instruction used to call all procedures.

The library procedure, possibly written in assembly language, typically puts
the system-call number in a place where the operating system expects it, such as a
register (step 5). Then it executes a TRAP instruction to switch from user mode to
kernel mode and start execution at a fixed address within the kernel (step 6). The
TRAP instruction is actually fairly similar to the procedure-call instruction in the

52 INTRODUCTION CHAP. 1

Address
OxFFFFFFFF _
Return to caller Library
Trap to the kernel procedure
5| Put code for read in register read
10
4
User space e
P Increment SP 11
r Call read
3[Push fd User program
calling read
2| Push &buffer g
1| Push nbytes
6 9
* 7
Kernel space Disoateh 7 8 | Sys-call
(Operating system) Ispatc handler

Figure 1-17. The 11 steps in making the system call read(fd, buffer, nbytes).

sense that the instruction following it is taken from a distant location and the return
address is saved on the stack for use later.

Nevertheless, the TRAP instruction also differs from the procedure-call instruc-
tion in two fundamental ways. First, as a side effect, it switches into kernel mode.
The procedure call instruction does not change the mode. Second, rather than giv-
ing a relative or absolute address where the procedure is located, the TRAP instruc-
tion cannot jump to an arbitrary address. Depending on the architecture, either it
jumps to a single fixed location or there is an 8-bit field in the instruction giving
the index into a table in memory containing jump addresses, or equivalent.

The kernel code that starts following the TRAP examines the system-call num-
ber and then dispatches to the correct system-call handler, usually via a table of
pointers to system-call handlers indexed on system-call number (step 7). At that
point the system-call handler runs (step 8). Once it has completed its work, control
may be returned to the user-space library procedure at the instruction following the
TRAP instruction (step 9). This procedure then returns to the user program in the
usual way procedure calls return (step 10).

To finish the job, the user program has to clean up the stack, as it does after
any procedure call (step 11). Assuming the stack grows downward, as it often

SEC. 1.6 SYSTEM CALLS 53

does, the compiled code increments the stack pointer exactly enough to remove the
parameters pushed before the call to read. The program is now free to do whatever
it wants to do next.

In step 9 above, we said “may be returned to the user-space library procedure”
for good reason. The system call may block the caller, preventing it from continu-
ing. For example, if it is trying to read from the keyboard and nothing has been
typed yet, the caller has to be blocked. In this case, the operating system will look
around to see if some other process can be run next. Later, when the desired input
is available, this process will get the attention of the system and run steps 9—11.

In the following sections, we will examine some of the most heavily used
POSIX system calls, or more specifically, the library procedures that make those
system calls. POSIX has about 100 procedure calls. Some of the most important
ones are listed in Fig. 1-18, grouped for convenience in four categories. In the text
we will briefly examine each call to see what it does.

To a large extent, the services offered by these calls determine most of what
the operating system has to do, since the resource management on personal com-
puters is minimal (at least compared to big machines with multiple users). The
services include things like creating and terminating processes, creating, deleting,
reading, and writing files, managing directories, and performing input and output.

As an aside, it is worth pointing out that the mapping of POSIX procedure
calls onto system calls is not one-to-one. The POSIX standard specifies a number
of procedures that a conformant system must supply, but it does not specify wheth-
er they are system calls, library calls, or something else. If a procedure can be car-
ried out without invoking a system call (i.e., without trapping to the kernel), it will
usually be done in user space for reasons of performance. However, most of the
POSIX procedures do invoke system calls, usually with one procedure mapping di-
rectly onto one system call. In a few cases, especially where several required pro-
cedures are only minor variations of one another, one system call handles more
than one library call.

1.6.1 System Calls for Process Management

The first group of calls in Fig. 1-18 deals with process management. Fork is a
good place to start the discussion. Fork is the only way to create a new process in
POSIX. It creates an exact duplicate of the original process, including all the file
descriptors, registers —everything. After the fork, the original process and the copy
(the parent and child) go their separate ways. All the variables have identical val-
ues at the time of the fork, but since the parent’s data are copied to create the child,
subsequent changes in one of them do not affect the other one. (The program text,
which is unchangeable, is shared between parent and child.) The fork call returns a
value, which is zero in the child and equal to the child’s PID (Process IDentifier)
in the parent. Using the returned PID, the two processes can see which one is the
parent process and which one is the child process.

54

INTRODUCTION

CHAP. 1

Process management

Call

Description

pid = fork()

Create a child process identical to the parent

pid = waitpid(pid, &statloc, options)

Wait for a child to terminate

s = execve(name, argv, environp)

Replace a process’ core image

exit(status)

Terminate process execution and return status

File management

Call

Description

fd = open(file, how, ...)

Open a file for reading, writing, or both

s = close(fd)

Close an open file

n = read(fd, buffer, nbytes)

Read data from a file into a buffer

n = write(fd, buffer, nbytes)

Write data from a buffer into a file

position = Iseek(fd, offset, whence)

Move the file pointer

s = stat(name, &buf)

Get a file’s status information

Directory- and fi

le-system management

Call

Description

s = mkdir(name, mode)

Create a new directory

s = rmdir(name)

Remove an empty directory

s = link(name1, name2)

Create a new entry, name2, pointing to name1

s = unlink(name)

Remove a directory entry

s = mount(special, name, flag)

Mount a file system

s = umount(special)

Unmount a file system

Mis

cellaneous

Call

Description

s = chdir(dirname)

Change the working directory

s = chmod(name, mode)

Change a file’s protection bits

s = kill(pid, signal)

Send a signal to a process

seconds = time(&seconds)

Get the elapsed time since Jan. 1, 1970

Figure 1-18. Some of the major POSIX system calls. The return code s is —1 if
an error has occurred. The return codes are as follows: pid is a process id, fd is a
file descriptor, n is a byte count, position is an offset within the file, and seconds
is the elapsed time. The parameters are explained in the text.

In most cases, after a fork, the child will need to execute different code from
the parent. Consider the case of the shell. It reads a command from the terminal,
forks off a child process, waits for the child to execute the command, and then
reads the next command when the child terminates. To wait for the child to finish,

SEC. 1.6 SYSTEM CALLS 55

the parent executes a waitpid system call, which just waits until the child terminates
(any child if more than one exists). Waitpid can wait for a specific child, or for any
old child by setting the first parameter to —1. When waitpid completes, the address
pointed to by the second parameter, statloc, will be set to the child process’ exit
status (normal or abnormal termination and exit value). Various options are also
provided, specified by the third parameter. For example, returning immediately if
no child has already exited.

Now consider how fork is used by the shell. When a command is typed, the
shell forks off a new process. This child process must execute the user command.
It does this by using the execve system call, which causes its entire core image to
be replaced by the file named in its first parameter. (Actually, the system call itself
is exec, but several library procedures call it with different parameters and slightly
different names. We will treat these as system calls here.) A highly simplified shell
illustrating the use of fork, waitpid, and execve is shown in Fig. 1-19.

#define TRUE 1

while (TRUE) { /* repeat forever */
type_prompt(); /* display prompt on the screen */
read_command(command, parameters); /* read input from terminal */
if (fork() !=0) { /* fork off child process */
/* Parent code. */
waitpid(—1, &status, 0); /* wait for child to exit */
}else {
/* Child code. */
execve(command, parameters, 0); /* execute command */

Figure 1-19. A stripped-down shell. Throughout this book, TRUE is assumed to
be defined as 1.

In the most general case, execve has three parameters: the name of the file to
be executed, a pointer to the argument array, and a pointer to the environment
array. These will be described shortly. Various library routines, including execl,
execv, execle, and execve, are provided to allow the parameters to be omitted or
specified in various ways. Throughout this book we will use the name exec to
represent the system call invoked by all of these.

Let us consider the case of a command such as

cp file1 file2

used to copy filel to file2. After the shell has forked, the child process locates and
executes the file cp and passes to it the names of the source and target files.

56 INTRODUCTION CHAP. 1

The main program of c¢p (and main program of most other C programs) con-
tains the declaration

main(argc, argv, envp)

where argc is a count of the number of items on the command line, including the
program name. For the example above, argc is 3.

The second parameter, argv, is a pointer to an array. Element i of that array is a
pointer to the ith string on the command line. In our example, argv[0] would point
to the string “cp”, argv[1] would point to the string “filel”, and argv[2] would
point to the string “file2”.

The third parameter of main, envp, is a pointer to the environment, an array of
strings containing assignments of the form name = value used to pass information
such as the terminal type and home directory name to programs. There are library
procedures that programs can call to get the environment variables, which are often
used to customize how a user wants to perform certain tasks (e.g., the default print-
er to use). In Fig. 1-19, no environment is passed to the child, so the third parame-
ter of execve is a zero.

If exec seems complicated, do not despair; it is (semantically) the most com-
plex of all the POSIX system calls. All the other ones are much simpler. As an ex-
ample of a simple one, consider exit, which processes should use when they are
finished executing. It has one parameter, the exit status (0 to 255), which is re-
turned to the parent via statloc in the waitpid system call.

Processes in UNIX have their memory divided up into three segments: the text
segment (i.e., the program code), the data segment (i.c., the variables), and the
stack segment. The data segment grows upward and the stack grows downward,
as shown in Fig. 1-20. Between them is a gap of unused address space. The stack
grows into the gap automatically, as needed, but expansion of the data segment is
done explicitly by using a system call, brk, which specifies the new address where
the data segment is to end. This call, however, is not defined by the POSIX stan-
dard, since programmers are encouraged to use the malloc library procedure for
dynamically allocating storage, and the underlying implementation of malloc was
not thought to be a suitable subject for standardization since few programmers use
it directly and it is doubtful that anyone even notices that brk is not in POSIX.

1.6.2 System Calls for File Management

Many system calls relate to the file system. In this section we will look at calls
that operate on individual files; in the next one we will examine those that involve
directories or the file system as a whole.

To read or write a file, it must first be opened. This call specifies the file name
to be opened, either as an absolute path name or relative to the working directory,
as well as a code of O_RDONLY, O_WRONLY, or O_RDWR, meaning open for
reading, writing, or both. To create a new file, the O_CREAT parameter is used.

SEC. 1.6 SYSTEM CALLS 57

Address (hex)

FFFF
Stack |
Data |
Text
0000

Figure 1-20. Processes have three segments: text, data, and stack.

The file descriptor returned can then be used for reading or writing. Afterward, the
file can be closed by close, which makes the file descriptor available for reuse on a
subsequent open.

The most heavily used calls are undoubtedly read and write. We saw read ear-
lier. Write has the same parameters.

Although most programs read and write files sequentially, for some applica-
tions programs need to be able to access any part of a file at random. Associated
with each file is a pointer that indicates the current position in the file. When read-
ing (writing) sequentially, it normally points to the next byte to be read (written).
The Iseek call changes the value of the position pointer, so that subsequent calls to
read or write can begin anywhere in the file.

Lseek has three parameters: the first is the file descriptor for the file, the sec-
ond is a file position, and the third tells whether the file position is relative to the
beginning of the file, the current position, or the end of the file. The value returned
by Iseek is the absolute position in the file (in bytes) after changing the pointer.

For each file, UNIX keeps track of the file mode (regular file, special file, di-
rectory, and so on), size, time of last modification, and other information. Pro-
grams can ask to see this information via the stat system call. The first parameter
specifies the file to be inspected; the second one is a pointer to a structure where
the information is to be put. The fstat calls does the same thing for an open file.

1.6.3 System Calls for Directory Management

In this section we will look at some system calls that relate more to directories
or the file system as a whole, rather than just to one specific file as in the previous
section. The first two calls, mkdir and rmdir, create and remove empty directories,
respectively. The next call is link. Its purpose is to allow the same file to appear
under two or more names, often in different directories. A typical use is to allow
several members of the same programming team to share a common file, with each
of them having the file appear in his own directory, possibly under different names.
Sharing a file is not the same as giving every team member a private copy; having

58 INTRODUCTION CHAP. 1

a shared file means that changes that any member of the team makes are instantly
visible to the other members—there is only one file. When copies are made of a
file, subsequent changes made to one copy do not affect the others.

To see how link works, consider the situation of Fig. 1-21(a). Here are two
users, ast and jim, each having his own directory with some files. If ast now ex-
ecutes a program containing the system call

link("/usr/jim/memo", "/usr/ast/note");

the file memo in jim’s directory is now entered into ast’s directory under the name
note. Thereafter, /usr/jim/memo and /usr/ast/note refer to the same file. As an
aside, whether user directories are kept in /usr, /user, /lhome, or somewhere else is
simply a decision made by the local system administrator.

/usr/ast /usr/jim /usr/ast /ust/jim
16 | mail 31| bin 16 | mail 31 [bin
81| games 70 | memo 81| games 70 | memo
40 | test 59| f.c. 40 | test 59| f.c.

38 | prog1 70 | note 38 | prog1
(a) (b)

Figure 1-21. (a) Two directories before linking /usr/jim/memo to ast’s directory.
(b) The same directories after linking.

Understanding how link works will probably make it clearer what it does.
Every file in UNIX has a unique number, its i-number, that identifies it. This
i-number is an index into a table of i-nodes, one per file, telling who owns the file,
where its disk blocks are, and so on. A directory is simply a file containing a set of
(i-number, ASCII name) pairs. In the first versions of UNIX, each directory entry
was 16 bytes—2 bytes for the i-number and 14 bytes for the name. Now a more
complicated structure is needed to support long file names, but conceptually a di-
rectory is still a set of (i-number, ASCII name) pairs. In Fig. 1-21, mail has i-num-
ber 16, and so on. What link does is simply create a brand new directory entry with
a (possibly new) name, using the i-number of an existing file. In Fig. 1-21(b), two
entries have the same i-number (70) and thus refer to the same file. If either one is
later removed, using the unlink system call, the other one remains. If both are re-
moved, UNIX sees that no entries to the file exist (a field in the i-node keeps track
of the number of directory entries pointing to the file), so the file is removed from
the disk.

As we have mentioned earlier, the mount system call allows two file systems to
be merged into one. A common situation is to have the root file system, containing
the binary (executable) versions of the common commands and other heavily used
files, on a hard disk (sub)partition and user files on another (sub)partition. Further,
the user can then insert a USB disk with files to be read.

SEC. 1.6 SYSTEM CALLS 59

By executing the mount system call, the USB file system can be attached to the
root file system, as shown in Fig. 1-22. A typical statement in C to mount is

mount("/dev/sdb0", "/mnt", 0);

where the first parameter is the name of a block special file for USB drive 0, the
second parameter is the place in the tree where it is to be mounted, and the third
parameter tells whether the file system is to be mounted read-write or read-only.

bin dev lib mnt usr b%
(b)

(@)

Figure 1-22. (a) File system before the mount. (b) File system after the mount.

After the mount call, a file on drive O can be accessed by just using its path
from the root directory or the working directory, without regard to which drive it is
on. In fact, second, third, and fourth drives can also be mounted anywhere in the
tree. The mount call makes it possible to integrate removable media into a single
integrated file hierarchy, without having to worry about which device a file is on.
Although this example involves CD-ROMs, portions of hard disks (often called
partitions or minor devices) can also be mounted this way, as well as external
hard disks and USB sticks. When a file system is no longer needed, it can be
unmounted with the umount system call.

1.6.4 Miscellaneous System Calls

A variety of other system calls exist as well. We will look at just four of them
here. The chdir call changes the current working directory. After the call

chdir("/usr/ast/test");

an open on the file xyz will open /usr/ast/test/xyz. The concept of a working direc-
tory eliminates the need for typing (long) absolute path names all the time.

In UNIX every file has a mode used for protection. The mode includes the
read-write-execute bits for the owner, group, and others. The chmod system call
makes it possible to change the mode of a file. For example, to make a file read-
only by everyone except the owner, one could execute

chmod(“file", 0644);

The kill system call is the way users and user processes send signals. If a proc-
ess is prepared to catch a particular signal, then when it arrives, a signal handler is

60 INTRODUCTION CHAP. 1

run. If the process is not prepared to handle a signal, then its arrival kills the proc-
ess (hence the name of the call).

POSIX defines a number of procedures for dealing with time. For example,
time just returns the current time in seconds, with O corresponding to Jan. 1, 1970
at midnight (just as the day was starting, not ending). On computers using 32-bit
words, the maximum value time can return is 23> — 1 seconds (assuming an unsign-
ed integer is used). This value corresponds to a little over 136 years. Thus in the
year 2106, 32-bit UNIX systems will go berserk, not unlike the famous Y2K prob-
lem that would have wreaked havoc with the world’s computers in 2000, were it
not for the massive effort the IT industry put into fixing the problem. If you cur-
rently have a 32-bit UNIX system, you are advised to trade it in for a 64-bit one
sometime before the year 2106.

1.6.5 The Windows Win32 API

So far we have focused primarily on UNIX. Now it is time to look briefly at
Windows. Windows and UNIX differ in a fundamental way in their respective pro-
gramming models. A UNIX program consists of code that does something or
other, making system calls to have certain services performed. In contrast, a Win-
dows program is normally event driven. The main program waits for some event to
happen, then calls a procedure to handle it. Typical events are keys being struck,
the mouse being moved, a mouse button being pushed, or a USB drive inserted.
Handlers are then called to process the event, update the screen and update the in-
ternal program state. All in all, this leads to a somewhat different style of pro-
gramming than with UNIX, but since the focus of this book is on operating system
function and structure, these different programming models will not concern us
much more.

Of course, Windows also has system calls. With UNIX, there is almost a one-
to-one relationship between the system calls (e.g., read) and the library procedures
(e.g., read) used to invoke the system calls. In other words, for each system call,
there is roughly one library procedure that is called to invoke it, as indicated in
Fig. 1-17. Furthermore, POSIX has only about 100 procedure calls.

With Windows, the situation is radically different. To start with, the library
calls and the actual system calls are highly decoupled. Microsoft has defined a set
of procedures called the Win32 API (Application Programming Interface) that
programmers are expected to use to get operating system services. This interface is
(partially) supported on all versions of Windows since Windows 95. By decou-
pling the API interface from the actual system calls, Microsoft retains the ability to
change the actual system calls in time (even from release to release) without invali-
dating existing programs. What actually constitutes Win32 is also slightly ambigu-
ous because recent versions of Windows have many new calls that were not previ-
ously available. In this section, Win32 means the interface supported by all ver-
sions of Windows. Win32 provides compatibility among versions of Windows.

SEC. 1.6 SYSTEM CALLS 61

The number of Win32 API calls is extremely large, numbering in the thou-
sands. Furthermore, while many of them do invoke system calls, a substantial num-
ber are carried out entirely in user space. As a consequence, with Windows it is
impossible to see what is a system call (i.e., performed by the kernel) and what is
simply a user-space library call. In fact, what is a system call in one version of
Windows may be done in user space in a different version, and vice versa. When
we discuss the Windows system calls in this book, we will use the Win32 proce-
dures (where appropriate) since Microsoft guarantees that these will be stable over
time. But it is worth remembering that not all of them are true system calls (i.e.,
traps to the kernel).

The Win32 API has a huge number of calls for managing windows, geometric
figures, text, fonts, scrollbars, dialog boxes, menus, and other features of the GUI.
To the extent that the graphics subsystem runs in the kernel (true on some versions
of Windows but not on all), these are system calls; otherwise they are just library
calls. Should we discuss these calls in this book or not? Since they are not really
related to the function of an operating system, we have decided not to, even though
they may be carried out by the kernel. Readers interested in the Win32 API should
consult one of the many books on the subject (e.g., Hart, 1997; Rector and New-
comer, 1997; and Simon, 1997).

Even introducing all the Win32 API calls here is out of the question, so we will
restrict ourselves to those calls that roughly correspond to the functionality of the
UNIX calls listed in Fig. 1-18. These are listed in Fig. 1-23.

Let us now briefly go through the list of Fig. 1-23. CreateProcess creates a
new process. It does the combined work of fork and execve in UNIX. It has many
parameters specifying the properties of the newly created process. Windows does
not have a process hierarchy as UNIX does so there is no concept of a parent proc-
ess and a child process. After a process is created, the creator and createe are
equals. WaitForSingleObject is used to wait for an event. Many possible events can
be waited for. If the parameter specifies a process, then the caller waits for the
specified process to exit, which is done using ExitProcess.

The next six calls operate on files and are functionally similar to their UNIX
counterparts although they differ in the parameters and details. Still, files can be
opened, closed, read, and written pretty much as in UNIX. The SetFilePointer and
GetFileAttributesEx calls set the file position and get some of the file attributes.

Windows has directories and they are created with CreateDirectory and
RemoveDirectory API calls, respectively. There is also a notion of a current direc-
tory, set by SetCurrentDirectory. The current time of day is acquired using GetlLo-
calTime.

The Win32 interface does not have links to files, mounted file systems, securi-
ty, or signals, so the calls corresponding to the UNIX ones do not exist. Of course,
Win32 has a huge number of other calls that UNIX does not have, especially for
managing the GUL. Windows Vista has an elaborate security system and also sup-
ports file links. Windows 7 and 8 add yet more features and system calls.

62 INTRODUCTION CHAP. 1

UNIX Win32 Description
fork CreateProcess Create a new process
waitpid | WaitForSingleObject| Can wait for a process to exit
execve | (none) CreateProcess = fork + execve
exit ExitProcess Terminate execution
open CreateFile Create a file or open an existing file
close CloseHandle Close a file
read ReadFile Read data from a file
write WriteFile Write data to a file
Iseek SetFilePointer Move the file pointer
stat GetFileAttributesEx | Get various file attributes
mkdir CreateDirectory Create a new directory
rmdir RemoveDirectory Remove an empty directory
link (none) Win32 does not support links
unlink DeleteFile Destroy an existing file
mount | (none) Win32 does not support mount
umount | (none) Win32 does not support mount, so no umount
chdir SetCurrentDirectory | Change the current working directory
chmod | (none) Win32 does not support security (although NT does)
kill (none) Win32 does not support signals
time GetlLocalTime Get the current time

Figure 1-23. The Win32 API calls that roughly correspond to the UNIX calls of
Fig. 1-18. It is worth emphasizing that Windows has a very large number of oth-
er system calls, most of which do not correspond to anything in UNIX.

One last note about Win32 is perhaps worth making. Win32 is not a terribly
uniform or consistent interface. The main culprit here was the need to be back-
ward compatible with the previous 16-bit interface used in Windows 3 .x.

1.7 OPERATING SYSTEM STRUCTURE

Now that we have seen what operating systems look like on the outside (i.e.,
the programmer’s interface), it is time to take a look inside. In the following sec-
tions, we will examine six different structures that have been tried, in order to get
some idea of the spectrum of possibilities. These are by no means exhaustive, but
they give an idea of some designs that have been tried in practice. The six designs
we will discuss here are monolithic systems, layered systems, microkernels, cli-
ent-server systems, virtual machines, and exokernels.

SEC. 1.7 OPERATING SYSTEM STRUCTURE 63

1.7.1 Monolithic Systems

By far the most common organization, in the monolithic approach the entire
operating system runs as a single program in kernel mode. The operating system is
written as a collection of procedures, linked together into a single large executable
binary program. When this technique is used, each procedure in the system is free
to call any other one, if the latter provides some useful computation that the former
needs. Being able to call any procedure you want is very efficient, but having thou-
sands of procedures that can call each other without restriction may also lead to a
system that is unwieldy and difficult to understand. Also, a crash in any of these
procedures will take down the entire operating system.

To construct the actual object program of the operating system when this ap-
proach is used, one first compiles all the individual procedures (or the files con-
taining the procedures) and then binds them all together into a single executable
file using the system linker. In terms of information hiding, there is essentially
none—every procedure is visible to every other procedure (as opposed to a struc-
ture containing modules or packages, in which much of the information is hidden
away inside modules, and only the officially designated entry points can be called
from outside the module).

Even in monolithic systems, however, it is possible to have some structure. The
services (system calls) provided by the operating system are requested by putting
the parameters in a well-defined place (e.g., on the stack) and then executing a trap
instruction. This instruction switches the machine from user mode to kernel mode
and transfers control to the operating system, shown as step 6 in Fig. 1-17. The
operating system then fetches the parameters and determines which system call is
to be carried out. After that, it indexes into a table that contains in slot k£ a pointer
to the procedure that carries out system call k (step 7 in Fig. 1-17).

This organization suggests a basic structure for the operating system:

1. A main program that invokes the requested service procedure.
2. A set of service procedures that carry out the system calls.
3. A set of utility procedures that help the service procedures.

In this model, for each system call there is one service procedure that takes care of
it and executes it. The utility procedures do things that are needed by several ser-
vice procedures, such as fetching data from user programs. This division of the
procedures into three layers is shown in Fig. 1-24.

In addition to the core operating system that is loaded when the computer is
booted, many operating systems support loadable extensions, such as I/O device
drivers and file systems. These components are loaded on demand. In UNIX they
are called shared libraries. In Windows they are called DLLs (Dynamic-Link
Libraries). They have file extension .dl/ and the CAWindows\system32 directory
on Windows systems has well over 1000 of them.

64 INTRODUCTION CHAP. 1

Main
procedure

Service
procedures

Utility
procedures

Figure 1-24. A simple structuring model for a monolithic system.

1.7.2 Layered Systems

A generalization of the approach of Fig. 1-24 is to organize the operating sys-
tem as a hierarchy of layers, each one constructed upon the one below it. The first
system constructed in this way was the THE system built at the Technische Hoge-
school Eindhoven in the Netherlands by E. W. Dijkstra (1968) and his students.
The THE system was a simple batch system for a Dutch computer, the Electrolog-
ica X8, which had 32K of 27-bit words (bits were expensive back then).

The system had six layers, as shown in Fig. 1-25. Layer O dealt with allocation
of the processor, switching between processes when interrupts occurred or timers
expired. Above layer O, the system consisted of sequential processes, each of
which could be programmed without having to worry about the fact that multiple
processes were running on a single processor. In other words, layer O provided the
basic multiprogramming of the CPU.

Layer Function
5 The operator
User programs
Input/output management
Operator-process communication
Memory and drum management
Processor allocation and multiprogramming

o= Wl

Figure 1-25. Structure of the THE operating system.

Layer 1 did the memory management. It allocated space for processes in main
memory and on a 512K word drum used for holding parts of processes (pages) for
which there was no room in main memory. Above layer 1, processes did not have
to worry about whether they were in memory or on the drum; the layer 1 software

SEC. 1.7 OPERATING SYSTEM STRUCTURE 65

took care of making sure pages were brought into memory at the moment they
were needed and removed when they were not needed.

Layer 2 handled communication between each process and the operator con-
sole (that is, the user). On top of this layer each process effectively had its own op-
erator console. Layer 3 took care of managing the I/O devices and buffering the
information streams to and from them. Above layer 3 each process could deal with
abstract I/O devices with nice properties, instead of real devices with many pecu-
liarities. Layer 4 was where the user programs were found. They did not have to
worry about process, memory, console, or /O management. The system operator
process was located in layer 5.

A further generalization of the layering concept was present in the MULTICS
system. Instead of layers, MULTICS was described as having a series of concentric
rings, with the inner ones being more privileged than the outer ones (which is ef-
fectively the same thing). When a procedure in an outer ring wanted to call a pro-
cedure in an inner ring, it had to make the equivalent of a system call, that is, a
TRAP instruction whose parameters were carefully checked for validity before the
call was allowed to proceed. Although the entire operating system was part of the
address space of each user process in MULTICS, the hardware made it possible to
designate individual procedures (memory segments, actually) as protected against
reading, writing, or executing.

Whereas the THE layering scheme was really only a design aid, because all the
parts of the system were ultimately linked together into a single executable pro-
gram, in MULTICS, the ring mechanism was very much present at run time and
enforced by the hardware. The advantage of the ring mechanism is that it can easi-
ly be extended to structure user subsystems. For example, a professor could write a
program to test and grade student programs and run this program in ring n, with
the student programs running in ring n + 1 so that they could not change their
grades.

1.7.3 Microkernels

With the layered approach, the designers have a choice where to draw the ker-
nel-user boundary. Traditionally, all the layers went in the kernel, but that is not
necessary. In fact, a strong case can be made for putting as little as possible in ker-
nel mode because bugs in the kernel can bring down the system instantly. In con-
trast, user processes can be set up to have less power so that a bug there may not be
fatal.

Various researchers have repeatedly studied the number of bugs per 1000 lines
of code (e.g., Basilli and Perricone, 1984; and Ostrand and Weyuker, 2002). Bug
density depends on module size, module age, and more, but a ballpark figure for
serious industrial systems is between two and ten bugs per thousand lines of code.
This means that a monolithic operating system of five million lines of code is like-
ly to contain between 10,000 and 50,000 kernel bugs. Not all of these are fatal, of

66 INTRODUCTION CHAP. 1

course, since some bugs may be things like issuing an incorrect error message in a
situation that rarely occurs. Nevertheless, operating systems are sufficiently buggy
that computer manufacturers put reset buttons on them (often on the front panel),
something the manufacturers of TV sets, stereos, and cars do not do, despite the
large amount of software in these devices.

The basic idea behind the microkernel design is to achieve high reliability by
splitting the operating system up into small, well-defined modules, only one of
which—the microkernel —runs in kernel mode and the rest run as relatively power-
less ordinary user processes. In particular, by running each device driver and file
system as a separate user process, a bug in one of these can crash that component,
but cannot crash the entire system. Thus a bug in the audio driver will cause the
sound to be garbled or stop, but will not crash the computer. In contrast, in a
monolithic system with all the drivers in the kernel, a buggy audio driver can easily
reference an invalid memory address and bring the system to a grinding halt in-
stantly.

Many microkernels have been implemented and deployed for decades (Haertig
et al., 1997; Heiser et al., 2006; Herder et al., 2006; Hildebrand, 1992; Kirsch et
al., 2005; Liedtke, 1993, 1995, 1996; Pike et al., 1992; and Zuberi et al., 1999).
With the exception of OS X, which is based on the Mach microkernel (Accetta et
al., 1986), common desktop operating systems do not use microkernels. However,
they are dominant in real-time, industrial, avionics, and military applications that
are mission critical and have very high reliability requirements. A few of the bet-
ter-known microkernels include Integrity, K42, L4, PikeOS, QNX, Symbian, and
MINIX 3. We now give a brief overview of MINIX 3, which has taken the idea of
modularity to the limit, breaking most of the operating system up into a number of
independent user-mode processes. MINIX 3 is a POSIX-conformant, open source
system freely available at www.minix3.org (Giuffrida et al., 2012; Giuffrida et al.,
2013; Herder et al., 2006; Herder et al., 2009; and Hruby et al., 2013).

The MINIX 3 microkernel is only about 12,000 lines of C and some 1400 lines
of assembler for very low-level functions such as catching interrupts and switching
processes. The C code manages and schedules processes, handles interprocess
communication (by passing messages between processes), and offers a set of about
40 kernel calls to allow the rest of the operating system to do its work. These calls
perform functions like hooking handlers to interrupts, moving data between ad-
dress spaces, and installing memory maps for new processes. The process structure
of MINIX 3 is shown in Fig. 1-26, with the kernel call handlers labeled Sys. The
device driver for the clock is also in the kernel because the scheduler interacts
closely with it. The other device drivers run as separate user processes.

Outside the kernel, the system is structured as three layers of processes all run-
ning in user mode. The lowest layer contains the device drivers. Since they run in
user mode, they do not have physical access to the I/O port space and cannot issue
I/O commands directly. Instead, to program an I/O device, the driver builds a struc-
ture telling which values to write to which I/O ports and makes a kernel call telling

www.minix3.org

SEC. 1.7 OPERATING SYSTEM STRUCTURE 67

__,Process

User programs
User ¥
| @

Servers

Microkernel handles interrupts, processes,
scheduling, interprocess communication

Figure 1-26. Simplified structure of the MINIX system.

the kernel to do the write. This approach means that the kernel can check to see
that the driver is writing (or reading) from I/O it is authorized to use. Consequently
(and unlike a monolithic design), a buggy audio driver cannot accidentally write on
the disk.

Above the drivers is another user-mode layer containing the servers, which do
most of the work of the operating system. One or more file servers manage the file
system(s), the process manager creates, destroys, and manages processes, and so
on. User programs obtain operating system services by sending short messages to
the servers asking for the POSIX system calls. For example, a process needing to
do a read sends a message to one of the file servers telling it what to read.

One interesting server is the reincarnation server, whose job is to check if the
other servers and drivers are functioning correctly. In the event that a faulty one is
detected, it is automatically replaced without any user intervention. In this way,
the system is self healing and can achieve high reliability.

The system has many restrictions limiting the power of each process. As men-
tioned, drivers can touch only authorized I/O ports, but access to kernel calls is also
controlled on a per-process basis, as is the ability to send messages to other proc-
esses. Processes can also grant limited permission for other processes to have the
kernel access their address spaces. As an example, a file system can grant permis-
sion for the disk driver to let the kernel put a newly read-in disk block at a specific
address within the file system’s address space. The sum total of all these restric-
tions is that each driver and server has exactly the power to do its work and nothing
more, thus greatly limiting the damage a buggy component can do.

An idea somewhat related to having a minimal kernel is to put the mechanism
for doing something in the kernel but not the policy. To make this point better,
consider the scheduling of processes. A relatively simple scheduling algorithm is
to assign a numerical priority to every process and then have the kernel run the

68 INTRODUCTION CHAP. 1

highest-priority process that is runnable. The mechanism—in the kernel—is to
look for the highest-priority process and run it. The policy —assigning priorities to
processes—can be done by user-mode processes. In this way, policy and mechan-
ism can be decoupled and the kernel can be made smaller.

1.7.4 Client-Server Model

A slight variation of the microkernel idea is to distinguish two classes of proc-
esses, the servers, each of which provides some service, and the clients, which use
these services. This model is known as the client-server model. Often the lowest
layer is a microkernel, but that is not required. The essence is the presence of cli-
ent processes and server processes.

Communication between clients and servers is often by message passing. To
obtain a service, a client process constructs a message saying what it wants and
sends it to the appropriate service. The service then does the work and sends back
the answer. If the client and server happen to run on the same machine, certain
optimizations are possible, but conceptually, we are still talking about message
passing here.

An obvious generalization of this idea is to have the clients and servers run on
different computers, connected by a local or wide-area network, as depicted in
Fig. 1-27. Since clients communicate with servers by sending messages, the cli-
ents need not know whether the messages are handled locally on their own ma-
chines, or whether they are sent across a network to servers on a remote machine.
As far as the client is concerned, the same thing happens in both cases: requests are
sent and replies come back. Thus the client-server model is an abstraction that can
be used for a single machine or for a network of machines.

Machine 1 Machine 2 Machine 3 Machine 4
Client | File server Process server Terminal server
oo Kernel Kernel Kernel Kernel oo
L
Network

Message from
client to server

Figure 1-27. The client-server model over a network.

Increasingly many systems involve users at their home PCs as clients and large
machines elsewhere running as servers. In fact, much of the Web operates this
way. A PC sends a request for a Web page to the server and the Web page comes
back. This is a typical use of the client-server model in a network.

SEC. 1.7 OPERATING SYSTEM STRUCTURE 69

1.7.5 Virtual Machines

The initial releases of OS/360 were strictly batch systems. Nevertheless, many
360 users wanted to be able to work interactively at a terminal, so various groups,
both inside and outside IBM, decided to write timesharing systems for it. The of-
ficial IBM timesharing system, TSS/360, was delivered late, and when it finally ar-
rived it was so big and slow that few sites converted to it. It was eventually aban-
doned after its development had consumed some $50 million (Graham, 1970). But
a group at IBM’s Scientific Center in Cambridge, Massachusetts, produced a radi-
cally different system that IBM eventually accepted as a product. A linear descen-
dant of it, called z/VM, is now widely used on IBM’s current mainframes, the
zSeries, which are heavily used in large corporate data centers, for example, as
e-commerce servers that handle hundreds or thousands of transactions per second
and use databases whose sizes run to millions of gigabytes.

VM/370

This system, originally called CP/CMS and later renamed VM/370 (Seawright
and MacKinnon, 1979), was based on an astute observation: a timesharing system
provides (1) multiprogramming and (2) an extended machine with a more con-
venient interface than the bare hardware. The essence of VM/370 is to completely
separate these two functions.

The heart of the system, known as the virtual machine monitor, runs on the
bare hardware and does the multiprogramming, providing not one, but several vir-
tual machines to the next layer up, as shown in Fig. 1-28. However, unlike all
other operating systems, these virtual machines are not extended machines, with
files and other nice features. Instead, they are exact copies of the bare hardware, in-
cluding kernel/user mode, I/O, interrupts, and everything else the real machine has.

Virtual 370s
T System calls here
I/O instructions here CMS CMS CMS *** Trap here
Trap here —>Y VM/370
370 Bare hardware

Figure 1-28. The structure of VM/370 with CMS.

Because each virtual machine is identical to the true hardware, each one can
run any operating system that will run directly on the bare hardware. Different vir-
tual machines can, and frequently do, run different operating systems. On the orig-
inal IBM VM/370 system, some ran OS/360 or one of the other large batch or

70 INTRODUCTION CHAP. 1

transaction-processing operating systems, while others ran a single-user, interactive
system called CMS (Conversational Monitor System) for interactive timesharing
users. The latter was popular with programmers.

When a CMS program executed a system call, the call was trapped to the oper-
ating system in its own virtual machine, not to VM/370, just as it would be were it
running on a real machine instead of a virtual one. CMS then issued the normal
hardware /O instructions for reading its virtual disk or whatever was needed to
carry out the call. These I/O instructions were trapped by VM/370, which then per-
formed them as part of its simulation of the real hardware. By completely separat-
ing the functions of multiprogramming and providing an extended machine, each
of the pieces could be much simpler, more flexible, and much easier to maintain.

In its modern incarnation, z/VM is usually used to run multiple complete oper-
ating systems rather than stripped-down single-user systems like CMS. For ex-
ample, the zSeries is capable of running one or more Linux virtual machines along
with traditional IBM operating systems.

Virtual Machines Rediscovered

While IBM has had a virtual-machine product available for four decades, and a
few other companies, including Oracle and Hewlett-Packard, have recently added
virtual-machine support to their high-end enterprise servers, the idea of virtu-
alization has largely been ignored in the PC world until recently. But in the past
few years, a combination of new needs, new software, and new technologies have
combined to make it a hot topic.

First the needs. Many companies have traditionally run their mail servers, Web
servers, FTP servers, and other servers on separate computers, sometimes with dif-
ferent operating systems. They see virtualization as a way to run them all on the
same machine without having a crash of one server bring down the rest.

Virtualization is also popular in the Web hosting world. Without virtualization,
Web hosting customers are forced to choose between shared hosting (which just
gives them a login account on a Web server, but no control over the server soft-
ware) and dedicated hosting (which gives them their own machine, which is very
flexible but not cost effective for small to medium Websites). When a Web hosting
company offers virtual machines for rent, a single physical machine can run many
virtual machines, each of which appears to be a complete machine. Customers who
rent a virtual machine can run whatever operating system and software they want
to, but at a fraction of the cost of a dedicated server (because the same physical
machine supports many virtual machines at the same time).

Another use of virtualization is for end users who want to be able to run two or
more operating systems at the same time, say Windows and Linux, because some
of their favorite application packages run on one and some run on the other. This
situation is illustrated in Fig. 1-29(a), where the term ‘‘virtual machine monitor”
has been renamed type 1 hypervisor, which is commonly used nowadays because

SEC. 1.7 OPERATING SYSTEM STRUCTURE 71

“virtual machine monitor” requires more keystrokes than people are prepared to
put up with now. Note that many authors use the terms interchangeably though.

Guest OS process Guest OS process
Excel Word Mplayer Apollon Host OS
O 00 e [O O O] tomel
Guest OS l Guest OS |
__N_m_d:)v_vs_ Machine simulator O O Type 2 hypervisor O O
Type 1 hypervisor Host operating system Host operating system
(a) (b) ()

Figure 1-29. (a) A type 1 hypervisor. (b) A pure type 2 hypervisor. (c) A practi-
cal type 2 hypervisor.

While no one disputes the attractiveness of virtual machines today, the problem
then was implementation. In order to run virtual machine software on a computer,
its CPU must be virtualizable (Popek and Goldberg, 1974). In a nutshell, here is
the problem. When an operating system running on a virtual machine (in user
mode) executes a privileged instruction, such as modifying the PSW or doing 1/O,
it is essential that the hardware trap to the virtual-machine monitor so the instruc-
tion can be emulated in software. On some CPUs—notably the Pentium, its prede-
cessors, and its clones—attempts to execute privileged instructions in user mode
are just ignored. This property made it impossible to have virtual machines on this
hardware, which explains the lack of interest in the x86 world. Of course, there
were interpreters for the Pentium, such as Bochs, that ran on the Pentium, but with
a performance loss of one to two orders of magnitude, they were not useful for ser-
ious work.

This situation changed as a result of several academic research projects in the
1990s and early years of this millennium, notably Disco at Stanford (Bugnion et
al., 1997) and Xen at Cambridge University (Barham et al., 2003). These research
papers led to several commercial products (e.g., VMware Workstation and Xen)
and a revival of interest in virtual machines. Besides VMware and Xen, popular
hypervisors today include KVM (for the Linux kernel), VirtualBox (by Oracle),
and Hyper-V (by Microsoft).

Some of these early research projects improved the performance over inter-
preters like Bochs by translating blocks of code on the fly, storing them in an inter-
nal cache, and then reusing them if they were executed again. This improved the
performance considerably, and led to what we will call machine simulators, as
shown in Fig. 1-29(b). However, although this technique, known as binary trans-
lation, helped improve matters, the resulting systems, while good enough to pub-
lish papers about in academic conferences, were still not fast enough to use in
commercial environments where performance matters a lot.

72 INTRODUCTION CHAP. 1

The next step in improving performance was to add a kernel module to do
some of the heavy lifting, as shown in Fig. 1-29(c). In practice now, all commer-
cially available hypervisors, such as VMware Workstation, use this hybrid strategy
(and have many other improvements as well). They are called type 2 hypervisors
by everyone, so we will (somewhat grudgingly) go along and use this name in the
rest of this book, even though we would prefer to called them type 1.7 hypervisors
to reflect the fact that they are not entirely user-mode programs. In Chap. 7, we
will describe in detail how VMware Workstation works and what the various
pieces do.

In practice, the real distinction between a type 1 hypervisor and a type 2 hyper-
visor is that a type 2 makes uses of a host operating system and its file system to
create processes, store files, and so on. A type 1 hypervisor has no underlying sup-
port and must perform all these functions itself.

After a type 2 hypervisor is started, it reads the installation CD-ROM (or CD-
ROM image file) for the chosen guest operating system and installs the guest OS
on a virtual disk, which is just a big file in the host operating system’s file system.
Type 1 hypervisors cannot do this because there is no host operating system to
store files on. They must manage their own storage on a raw disk partition.

When the guest operating system is booted, it does the same thing it does on
the actual hardware, typically starting up some background processes and then a
GUI. To the user, the guest operating system behaves the same way it does when
running on the bare metal even though that is not the case here.

A different approach to handling control instructions is to modify the operating
system to remove them. This approach is not true virtualization, but paravirtual-
ization. We will discuss virtualization in more detail in Chap. 7.

The Java Virtual Machine

Another area where virtual machines are used, but in a somewhat different
way, is for running Java programs. When Sun Microsystems invented the Java pro-
gramming language, it also invented a virtual machine (i.e., a computer architec-
ture) called the JVM (Java Virtual Machine). The Java compiler produces code
for JVM, which then typically is executed by a software JVM interpreter. The ad-
vantage of this approach is that the JVM code can be shipped over the Internet to
any computer that has a JVM interpreter and run there. If the compiler had pro-
duced SPARC or x86 binary programs, for example, they could not have been
shipped and run anywhere as easily. (Of course, Sun could have produced a com-
piler that produced SPARC binaries and then distributed a SPARC interpreter, but
JVM is a much simpler architecture to interpret.) Another advantage of using JVM
is that if the interpreter is implemented properly, which is not completely trivial,
incoming JVM programs can be checked for safety and then executed in a protect-
ed environment so they cannot steal data or do any damage.

SEC. 1.7 OPERATING SYSTEM STRUCTURE 73

1.7.6 Exokernels

Rather than cloning the actual machine, as is done with virtual machines, an-
other strategy is partitioning it, in other words, giving each user a subset of the re-
sources. Thus one virtual machine might get disk blocks O to 1023, the next one
might get blocks 1024 to 2047, and so on.

At the bottom layer, running in kernel mode, is a program called the exokernel
(Engler et al., 1995). Its job is to allocate resources to virtual machines and then
check attempts to use them to make sure no machine is trying to use somebody
else’s resources. Each user-level virtual machine can run its own operating system,
as on VM/370 and the Pentium virtual 8086s, except that each one is restricted to
using only the resources it has asked for and been allocated.

The advantage of the exokernel scheme is that it saves a layer of mapping. In
the other designs, each virtual machine thinks it has its own disk, with blocks run-
ning from O to some maximum, so the virtual machine monitor must maintain
tables to remap disk addresses (and all other resources). With the exokernel, this
remapping is not needed. The exokernel need only keep track of which virtual ma-
chine has been assigned which resource. This method still has the advantage of
separating the multiprogramming (in the exokernel) from the user operating system
code (in user space), but with less overhead, since all the exokernel has to do is
keep the virtual machines out of each other’s hair.

1.8 THE WORLD ACCORDING TO C

Operating systems are normally large C (or sometimes C++) programs consist-
ing of many pieces written by many programmers. The environment used for
developing operating systems is very different from what individuals (such as stu-
dents) are used to when writing small Java programs. This section is an attempt to
give a very brief introduction to the world of writing an operating system for small-
time Java or Python programmers.

1.8.1 The C Language

This is not a guide to C, but a short summary of some of the key differences
between C and languages like Python and especially Java. Java is based on C, so
there are many similarities between the two. Python is somewhat different, but still
fairly similar. For convenience, we focus on Java. Java, Python, and C are all
imperative languages with data types, variables, and control statements, for ex-
ample. The primitive data types in C are integers (including short and long ones),
characters, and floating-point numbers. Composite data types can be constructed
using arrays, structures, and unions. The control statements in C are similar to
those in Java, including if, switch, for, and while statements. Functions and param-
eters are roughly the same in both languages.

74 INTRODUCTION CHAP. 1

One feature C has that Java and Python do not is explicit pointers. A pointer
is a variable that points to (i.e., contains the address of) a variable or data structure.
Consider the statements

char ci, c2, *p;

cl='c;
p = &ct;
c2 = *p;

which declare ¢/ and ¢2 to be character variables and p to be a variable that points
to (i.e., contains the address of) a character. The first assignment stores the ASCII
code for the character “c” in the variable c/. The second one assigns the address
of ¢l to the pointer variable p. The third one assigns the contents of the variable
pointed to by p to the variable c2, so after these statements are executed, c2 also
contains the ASCII code for “c”. In theory, pointers are typed, so you are not sup-
posed to assign the address of a floating-point number to a character pointer, but in
practice compilers accept such assignments, albeit sometimes with a warning.
Pointers are a very powerful construct, but also a great source of errors when used
carelessly.

Some things that C does not have include built-in strings, threads, packages,
classes, objects, type safety, and garbage collection. The last one is a show stopper
for operating systems. All storage in C is either static or explicitly allocated and
released by the programmer, usually with the library functions malloc and free. It
is the latter property —total programmer control over memory —along with explicit
pointers that makes C attractive for writing operating systems. Operating systems
are basically real-time systems to some extent, even general-purpose ones. When
an interrupt occurs, the operating system may have only a few microseconds to
perform some action or lose critical information. Having the garbage collector kick
in at an arbitrary moment is intolerable.

1.8.2 Header Files

An operating system project generally consists of some number of directories,
each containing many .c files containing the code for some part of the system,
along with some .k header files that contain declarations and definitions used by
one or more code files. Header files can also include simple macros, such as

#define BUFFER_SIZE 4096

which allows the programmer to name constants, so that when BUFFER_SIZE is
used in the code, it is replaced during compilation by the number 4096. Good C
programming practice is to name every constant except 0, 1, and —1, and some-
times even them. Macros can have parameters, such as

#define max(a, b) (a>b?a:b)

which allows the programmer to write

SEC. 1.8 THE WORLD ACCORDING TO C 75

i = max(j, k+1)
and get
i=(>k+1?j:k+1)

to store the larger of j and k+/ in i. Headers can also contain conditional compila-
tion, for example

#ifdef X86
intel_int_ack();
#endif

which compiles into a call to the function intel_int_ack if the macro X86 is defined
and nothing otherwise. Conditional compilation is heavily used to isolate architec-
ture-dependent code so that certain code is inserted only when the system is com-
piled on the X86, other code is inserted only when the system is compiled on a
SPARC, and so on. A .c file can bodily include zero or more header files using the
#include directive. There are also many header files that are common to nearly
every .c and are stored in a central directory.

1.8.3 Large Programming Projects

To build the operating system, each .c is compiled into an object file by the C
compiler. Object files, which have the suffix .o, contain binary instructions for the
target machine. They will later be directly executed by the CPU. There is nothing
like Java byte code or Python byte code in the C world.

The first pass of the C compiler is called the C preprocessor. As it reads each
.c file, every time it hits a #include directive, it goes and gets the header file named
in it and processes it, expanding macros, handling conditional compilation (and
certain other things) and passing the results to the next pass of the compiler as if
they were physically included.

Since operating systems are very large (five million lines of code is not
unusual), having to recompile the entire thing every time one file is changed would
be unbearable. On the other hand, changing a key header file that is included in
thousands of other files does require recompiling those files. Keeping track of
which object files depend on which header files is completely unmanageable with-
out help.

Fortunately, computers are very good at precisely this sort of thing. On UNIX
systems, there is a program called make (with numerous variants such as gmake,
pmake, etc.) that reads the Makefile, which tells it which files are dependent on
which other files. What make does is see which object files are needed to build the
operating system binary and for each one, check to see if any of the files it depends
on (the code and headers) have been modified subsequent to the last time the ob-
ject file was created. If so, that object file has to be recompiled. When make has
determined which .c files have to recompiled, it then invokes the C compiler to

76 INTRODUCTION CHAP. 1

recompile them, thus reducing the number of compilations to the bare minimum.
In large projects, creating the Makefile is error prone, so there are tools that do it
automatically.

Once all the .o files are ready, they are passed to a program called the linker to
combine all of them into a single executable binary file. Any library functions cal-
led are also included at this point, interfunction references are resolved, and ma-
chine addresses are relocated as need be. When the linker is finished, the result is
an executable program, traditionally called a.out on UNIX systems. The various
components of this process are illustrated in Fig. 1-30 for a program with three C
files and two header files. Although we have been discussing operating system de-
velopment here, all of this applies to developing any large program.

C
preprocesor

C
compiler

S

main.o

linker
Executable
@ binary program

Figure 1-30. The process of compiling C and header files to make an executable.

other.o

1.8.4 The Model of Run Time

Once the operating system binary has been linked, the computer can be
rebooted and the new operating system started. Once running, it may dynamically
load pieces that were not statically included in the binary such as device drivers

SEC. 1.8 THE WORLD ACCORDING TO C 77

and file systems. At run time the operating system may consist of multiple seg-
ments, for the text (the program code), the data, and the stack. The text segment is
normally immutable, not changing during execution. The data segment starts out
at a certain size and initialized with certain values, but it can change and grow as
need be. The stack is initially empty but grows and shrinks as functions are called
and returned from. Often the text segment is placed near the bottom of memory,
the data segment just above it, with the ability to grow upward, and the stack seg-
ment at a high virtual address, with the ability to grow downward, but different
systems work differently.

In all cases, the operating system code is directly executed by the hardware,
with no interpreter and no just-in-time compilation, as is normal with Java.

1.9 RESEARCH ON OPERATING SYSTEMS

Computer science is a rapidly advancing field and it is hard to predict where it
is going. Researchers at universities and industrial research labs are constantly
thinking up new ideas, some of which go nowhere but some of which become the
cornerstone of future products and have massive impact on the industry and users.
Telling which is which turns out to be easier to do in hindsight than in real time.
Separating the wheat from the chaff is especially difficult because it often takes 20
to 30 years from idea to impact.

For example, when President Eisenhower set up the Dept. of Defense’s Ad-
vanced Research Projects Agency (ARPA) in 1958, he was trying to keep the
Army from killing the Navy and the Air Force over the Pentagon’s research bud-
get. He was not trying to invent the Internet. But one of the things ARPA did was
fund some university research on the then-obscure concept of packet switching,
which led to the first experimental packet-switched network, the ARPANET. It
went live in 1969. Before long, other ARPA-funded research networks were con-
nected to the ARPANET, and the Internet was born. The Internet was then happily
used by academic researchers for sending email to each other for 20 years. In the
early 1990s, Tim Berners-Lee invented the World Wide Web at the CERN research
lab in Geneva and Marc Andreesen wrote a graphical browser for it at the Univer-
sity of Illinois. All of a sudden the Internet was full of twittering teenagers. Presi-
dent Eisenhower is probably rolling over in his grave.

Research in operating systems has also led to dramatic changes in practical
systems. As we discussed earlier, the first commercial computer systems were all
batch systems, until M.I.T. invented general-purpose timesharing in the early
1960s. Computers were all text-based until Doug Engelbart invented the mouse
and the graphical user interface at Stanford Research Institute in the late 1960s.
Who knows what will come next?

In this section and in comparable sections throughout the book, we will take a
brief look at some of the research in operating systems that has taken place during

78 INTRODUCTION CHAP. 1

the past 5 to 10 years, just to give a flavor of what might be on the horizon. This
introduction is certainly not comprehensive. It is based largely on papers that have
been published in the top research conferences because these ideas have at least
survived a rigorous peer review process in order to get published. Note that in com-
puter science—in contrast to other scientific fields—most research is published in
conferences, not in journals. Most of the papers cited in the research sections were
published by either ACM, the IEEE Computer Society, or USENIX and are avail-
able over the Internet to (student) members of these organizations. For more infor-
mation about these organizations and their digital libraries, see

ACM http://www.acm.org
IEEE Computer Society http://www.computer.org
USENIX http://www.usenix.org

Virtually all operating systems researchers realize that current operating sys-
tems are massive, inflexible, unreliable, insecure, and loaded with bugs, certain
ones more than others (names withheld here to protect the guilty). Consequently,
there is a lot of research on how to build better operating systems. Work has recent-
ly been published about bugs and debugging (Renzelmann et al., 2012; and Zhou et
al., 2012), crash recovery (Correia et al., 2012; Ma et al., 2013; Ongaro et al.,
2011; and Yeh and Cheng, 2012), energy management (Pathak et al., 2012; Pet-
rucci and Loques, 2012; and Shen et al., 2013), file and storage systems (Elnably
and Wang, 2012; Nightingale et al., 2012; and Zhang et al., 2013a), high-per-
formance I/O (De Bruijn et al., 2011; Li et al., 2013a; and Rizzo, 2012), hyper-
threading and multithreading (Liu et al., 2011), live update (Giuffrida et al., 2013),
managing GPUs (Rossbach et al., 2011), memory management (Jantz et al., 2013;
and Jeong et al., 2013), multicore operating systems (Baumann et al., 2009; Kaprit-
sos, 2012; Lachaize et al., 2012; and Wentzlaff et al., 2012), operating system cor-
rectness (Elphinstone et al., 2007; Yang et al., 2006; and Klein et al., 2009), operat-
ing system reliability (Hruby et al., 2012; Ryzhyk et al., 2009, 2011 and Zheng et
al., 2012), privacy and security (Dunn et al., 2012; Giuffrida et al., 2012; Li et al.,
2013b; Lorch et al., 2013; Ortolani and Crispo, 2012; Slowinska et al., 2012; and
Ur et al., 2012), usage and performance monitoring (Harter et. al, 2012; and Ravin-
dranath et al., 2012), and virtualization (Agesen et al., 2012; Ben-Yehuda et al.,
2010; Colp et al., 2011; Dai et al., 2013; Tarasov et al., 2013; and Williams et al.,
2012) among many other topics.

1.10 OUTLINE OF THE REST OF THIS BOOK

We have now completed our introduction and bird’s-eye view of the operating
system. It is time to get down to the details. As mentioned already, from the pro-
grammer’s point of view, the primary purpose of an operating system is to provide

http://www.acm.org
http://www.computer.org
http://www.usenix.org

SEC. 1.10 OUTLINE OF THE REST OF THIS BOOK 79

some key abstractions, the most important of which are processes and threads, ad-
dress spaces, and files. Accordingly the next three chapters are devoted to these
critical topics.

Chapter 2 is about processes and threads. It discusses their properties and how
they communicate with one another. It also gives a number of detailed examples
of how interprocess communication works and how to avoid some of the pitfalls.

In Chap. 3 we will study address spaces and their adjunct, memory man-
agement, in detail. The important topic of virtual memory will be examined, along
with closely related concepts such as paging and segmentation.

Then, in Chap. 4, we come to the all-important topic of file systems. To a con-
siderable extent, what the user sees is largely the file system. We will look at both
the file-system interface and the file-system implementation.

Input/Output is covered in Chap. 5. The concepts of device independence and
device dependence will be looked at. Several important devices, including disks,
keyboards, and displays, will be used as examples.

Chapter 6 is about deadlocks. We briefly showed what deadlocks are in this
chapter, but there is much more to say. Ways to prevent or avoid them are dis-
cussed.

At this point we will have completed our study of the basic principles of sin-
gle-CPU operating systems. However, there is more to say, especially about ad-
vanced topics. In Chap. 7, we examine virtualization. We discuss both the prin-
ciples, and some of the existing virtualization solutions in detail. Since virtu-
alization is heavily used in cloud computing, we will also gaze at existing clouds.
Another advanced topic is multiprocessor systems, including multicores, parallel
computers, and distributed systems. These subjects are covered in Chap. 8.

A hugely important subject is operating system security, which is covered in
Chap 9. Among the topics discussed in this chapter are threats (e.g., viruses and
worms), protection mechanisms, and security models.

Next we have some case studies of real operating systems. These are UNIX,
Linux, and Android (Chap. 10), and Windows 8 (Chap. 11). The text concludes
with some wisdom and thoughts about operating system design in Chap. 12.

1.11 METRIC UNITS

To avoid any confusion, it is worth stating explicitly that in this book, as in
computer science in general, metric units are used instead of traditional English
units (the furlong-stone-fortnight system). The principal metric prefixes are listed
in Fig. 1-31. The prefixes are typically abbreviated by their first letters, with the
units greater than 1 capitalized. Thus a 1-TB database occupies 10'? bytes of stor-
age and a 100-psec (or 100-ps) clock ticks every 107'* seconds. Since milli and

micro both begin with the letter “m,” a choice had to be made. Normally, “m™ is
for milli and “x” (the Greek letter mu) is for micro.

80 INTRODUCTION CHAP. 1
Exp. Explicit Prefix | Exp. Explicit Prefix
10 | 0.001 milli 108 1,000 | Kilo
107% | 0.000001 micro | 10° 1,000,000 | Mega
10° | 0.000000001 nano | 10° 1,000,000,000 | Giga
1072 | 0.000000000001 pico 102 1,000,000,000,000 | Tera
107'® | 0.000000000000001 femto | 10'° 1,000,000,000,000,000 | Peta
107'® | 0.000000000000000001 atto 108 1,000,000,000,000,000,000 | Exa
102" | 0.000000000000000000001 zepto | 10%! 1,000,000,000,000,000,000,000 | Zetta
1072* | 0.000000000000000000000001 | yocto | 10%* | 1,000,000,000,000,000,000,000,000 | Yotta

Figure 1-31. The principal metric prefixes.

It is also worth pointing out that, in common industry practice, the units for
measuring memory sizes have slightly different meanings. There kilo means 2'°
(1024) rather than 10° (1000) because memories are always a power of two. Thus a
1-KB memory contains 1024 bytes, not 1000 bytes. Similarly, a 1-MB memory
contains 2% (1,048,576) bytes and a 1-GB memory contains 2% (1,073,741,824)
bytes. However, a 1-Kbps communication line transmits 1000 bits per second and a
10-Mbps LAN runs at 10,000,000 bits/sec because these speeds are not powers of
two. Unfortunately, many people tend to mix up these two systems, especially for
disk sizes. To avoid ambiguity, in this book, we will use the symbols KB, MB, and
GB for 2'°,2%°, and 2% bytes respectively, and the symbols Kbps, Mbps, and Gbps
for 10°, 10%, and 10 bits/sec, respectively.

1.12 SUMMARY

Operating systems can be viewed from two viewpoints: resource managers and
extended machines. In the resource-manager view, the operating system’s job is to
manage the different parts of the system efficiently. In the extended-machine view,
the job of the system is to provide the users with abstractions that are more con-
venient to use than the actual machine. These include processes, address spaces,
and files.

Operating systems have a long history, starting from the days when they re-
placed the operator, to modern multiprogramming systems. Highlights include
early batch systems, multiprogramming systems, and personal computer systems.

Since operating systems interact closely with the hardware, some knowledge
of computer hardware is useful to understanding them. Computers are built up of
processors, memories, and I/0 devices. These parts are connected by buses.

The basic concepts on which all operating systems are built are processes,
memory management, I/O management, the file system, and security. Each of these
will be treated in a subsequent chapter.

SEC. 1.12 SUMMARY 81

The heart of any operating system is the set of system calls that it can handle.
These tell what the operating system really does. For UNIX, we have looked at
four groups of system calls. The first group of system calls relates to process crea-
tion and termination. The second group is for reading and writing files. The third
group is for directory management. The fourth group contains miscellaneous calls.

Operating systems can be structured in several ways. The most common ones
are as a monolithic system, a hierarchy of layers, microkernel, client-server, virtual
machine, or exokernel.

PROBLEMS

1. What are the two main functions of an operating system?

2. In Section 1.4, nine different types of operating systems are described. Give a list of
applications for each of these systems (one per operating systems type).

3. What is the difference between timesharing and multiprogramming systems?

4. To use cache memory, main memory is divided into cache lines, typically 32 or 64
bytes long. An entire cache line is cached at once. What is the advantage of caching an
entire line instead of a single byte or word at a time?

5. On early computers, every byte of data read or written was handled by the CPU (i.e.,
there was no DMA). What implications does this have for multiprogramming?

6. Instructions related to accessing I/O devices are typically privileged instructions, that
is, they can be executed in kernel mode but not in user mode. Give a reason why these
instructions are privileged.

7. The family-of-computers idea was introduced in the 1960s with the IBM System/360
mainframes. Is this idea now dead as a doornail or does it live on?

8. One reason GUIs were initially slow to be adopted was the cost of the hardware need-
ed to support them. How much video RAM is needed to support a 25-line x 80-row
character monochrome text screen? How much for a 1200 x 900-pixel 24-bit color bit-
map? What was the cost of this RAM at 1980 prices ($5/KB)? How much is it now?

9. There are several design goals in building an operating system, for example, resource
utilization, timeliness, robustness, and so on. Give an example of two design goals that
may contradict one another.

10. What is the difference between kernel and user mode? Explain how having two distinct
modes aids in designing an operating system.

11. A 255-GB disk has 65,536 cylinders with 255 sectors per track and 512 bytes per sec-
tor. How many platters and heads does this disk have? Assuming an average cylinder
seek time of 11 ms, average rotational delay of 7 msec and reading rate of 100 MB/sec,
calculate the average time it will take to read 400 KB from one sector.

82

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22,

23.

INTRODUCTION CHAP. 1

Which of the following instructions should be allowed only in kernel mode?

(a) Disable all interrupts.

(b) Read the time-of-day clock.
(c) Set the time-of-day clock.
(d) Change the memory map.

Consider a system that has two CPUs, each CPU having two threads (hyperthreading).
Suppose three programs, PO, PI, and P2, are started with run times of 5, 10 and 20
msec, respectively. How long will it take to complete the execution of these programs?
Assume that all three programs are 100% CPU bound, do not block during execution,
and do not change CPUs once assigned.

A computer has a pipeline with four stages. Each stage takes the same time to do its
work, namely, 1 nsec. How many instructions per second can this machine execute?

Consider a computer system that has cache memory, main memory (RAM) and disk,
and an operating system that uses virtual memory. It takes 1 nsec to access a word
from the cache, 10 nsec to access a word from the RAM, and 10 ms to access a word
from the disk. If the cache hit rate is 95% and main memory hit rate (after a cache
miss) is 99%, what is the average time to access a word?

When a user program makes a system call to read or write a disk file, it provides an
indication of which file it wants, a pointer to the data buffer, and the count. Control is
then transferred to the operating system, which calls the appropriate driver. Suppose
that the driver starts the disk and terminates until an interrupt occurs. In the case of
reading from the disk, obviously the caller will have to be blocked (because there are
no data for it). What about the case of writing to the disk? Need the caller be blocked
awaiting completion of the disk transfer?

What is a trap instruction? Explain its use in operating systems.

Why is the process table needed in a timesharing system? Is it also needed in personal
computer systems running UNIX or Windows with a single user?

Is there any reason why you might want to mount a file system on a nonempty direc-
tory? If so, what is it?

For each of the following system calls, give a condition that causes it to fail: fork, exec,
and unlink.

What type of multiplexing (time, space, or both) can be used for sharing the following
resources: CPU, memory, disk, network card, printer, keyboard, and display?

Can the
count = write(fd, buffer, nbytes);
call return any value in count other than nbytes? If so, why?

A file whose file descriptor is fd contains the following sequence of bytes: 3, 1,4, 1,5,
9,2,6,5,3,5. The following system calls are made:

Iseek(fd, 3, SEEK_SET);
read(fd, &buffer, 4);

CHAP. 1 PROBLEMS 83

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

3.

35.

where the Iseek call makes a seek to byte 3 of the file. What does buffer contain after
the read has completed?

Suppose that a 10-MB file is stored on a disk on the same track (track 50) in consecu-
tive sectors. The disk arm is currently situated over track number 100. How long will
it take to retrieve this file from the disk? Assume that it takes about 1 ms to move the
arm from one cylinder to the next and about 5 ms for the sector where the beginning of
the file is stored to rotate under the head. Also, assume that reading occurs at a rate of
200 MB/s.

What is the essential difference between a block special file and a character special
file?

In the example given in Fig. 1-17, the library procedure is called read and the system
call itself is called read. Is it essential that both of these have the same name? If not,
which one is more important?

Modern operating systems decouple a process address space from the machine’s physi-
cal memory. List two advantages of this design.

To a programmer, a system call looks like any other call to a library procedure. Is it
important that a programmer know which library procedures result in system calls?
Under what circumstances and why?

Figure 1-23 shows that a number of UNIX system calls have no Win32 API equiv-
alents. For each of the calls listed as having no Win32 equivalent, what are the conse-
quences for a programmer of converting a UNIX program to run under Windows?

A portable operating system is one that can be ported from one system architecture to
another without any modification. Explain why it is infeasible to build an operating
system that is completely portable. Describe two high-level layers that you will have in
designing an operating system that is highly portable.

Explain how separation of policy and mechanism aids in building microkernel-based
operating systems.

Virtual machines have become very popular for a variety of reasons. Nevertheless,
they have some downsides. Name one.

Here are some questions for practicing unit conversions:

(a) How long is a nanoyear in seconds?

(b) Micrometers are often called microns. How long is a megamicron?
(c) How many bytes are there in a 1-PB memory?

(d) The mass of the earth is 6000 yottagrams. What is that in kilograms?

Write a shell that is similar to Fig. 1-19 but contains enough code that it actually works
so you can test it. You might also add some features such as redirection of input and
output, pipes, and background jobs.

If you have a personal UNIX-like system (Linux, MINIX 3, FreeBSD, etc.) available
that you can safely crash and reboot, write a shell script that attempts to create an
unlimited number of child processes and observe what happens. Before running the
experiment, type sync to the shell to flush the file system buffers to disk to avoid

84 INTRODUCTION CHAP. 1

ruining the file system. You can also do the experiment safely in a virtual machine.
Note: Do not try this on a shared system without first getting permission from the sys-
tem administrator. The consequences will be instantly obvious so you are likely to be
caught and sanctions may follow.

36. Examine and try to interpret the contents of a UNIX-like or Windows directory with a
tool like the UNIX od program. (Hint: How you do this will depend upon what the OS
allows. One trick that may work is to create a directory on a USB stick with one oper-
ating system and then read the raw device data using a different operating system that
allows such access.)

PROCESSES AND THREADS

We are now about to embark on a detailed study of how operating systems are
designed and constructed. The most central concept in any operating system is the
process: an abstraction of a running program. Everything else hinges on this con-
cept, and the operating system designer (and student) should have a thorough un-
derstanding of what a process is as early as possible.

Processes are one of the oldest and most important abstractions that operating
systems provide. They support the ability to have (pseudo) concurrent operation
even when there is only one CPU available. They turn a single CPU into multiple
virtual CPUs. Without the process abstraction, modern computing could not exist.
In this chapter we will go into considerable detail about processes and their first
cousins, threads.

2.1 PROCESSES

All modern computers often do several things at the same time. People used to
working with computers may not be fully aware of this fact, so a few examples
may make the point clearer. First consider a Web server. Requests come in from
all over asking for Web pages. When a request comes in, the server checks to see if
the page needed is in the cache. If it is, it is sent back; if it is not, a disk request is
started to fetch it. However, from the CPU’s perspective, disk requests take eter-
nity. While waiting for a disk request to complete, many more requests may come

85

86 PROCESSES AND THREADS CHAP. 2

in. If there are multiple disks present, some or all of the newer ones may be fired
off to other disks long before the first request is satisfied. Clearly some way is
needed to model and control this concurrency. Processes (and especially threads)
can help here.

Now consider a user PC. When the system is booted, many processes are se-
cretly started, often unknown to the user. For example, a process may be started up
to wait for incoming email. Another process may run on behalf of the antivirus
program to check periodically if any new virus definitions are available. In addi-
tion, explicit user processes may be running, printing files and backing up the
user’s photos on a USB stick, all while the user is surfing the Web. All this activity
has to be managed, and a multiprogramming system supporting multiple processes
comes in very handy here.

In any multiprogramming system, the CPU switches from process to process
quickly, running each for tens or hundreds of milliseconds. While, strictly speak-
ing, at any one instant the CPU is running only one process, in the course of 1 sec-
ond it may work on several of them, giving the illusion of parallelism. Sometimes
people speak of pseudoparallelism in this context, to contrast it with the true hard-
ware parallelism of multiprocessor systems (which have two or more CPUs shar-
ing the same physical memory). Keeping track of multiple, parallel activities is
hard for people to do. Therefore, operating system designers over the years have
evolved a conceptual model (sequential processes) that makes parallelism easier to
deal with. That model, its uses, and some of its consequences form the subject of
this chapter.

2.1.1 The Process Model

In this model, all the runnable software on the computer, sometimes including
the operating system, is organized into a number of sequential processes, or just
processes for short. A process is just an instance of an executing program, includ-
ing the current values of the program counter, registers, and variables. Con-
ceptually, each process has its own virtual CPU. In reality, of course, the real CPU
switches back and forth from process to process, but to understand the system, it is
much easier to think about a collection of processes running in (pseudo) parallel
than to try to keep track of how the CPU switches from program to program. This
rapid switching back and forth is called multiprogramming, as we saw in Chap.
1.

In Fig. 2-1(a) we see a computer multiprogramming four programs in memory.
In Fig. 2-1(b) we see four processes, each with its own flow of control (i.e., its own
logical program counter), and each one running independently of the other ones.
Of course, there is only one physical program counter, so when each process runs,
its logical program counter is loaded into the real program counter. When it is fin-
ished (for the time being), the physical program counter is saved in the process’
stored logical program counter in memory. In Fig. 2-1(c) we see that, viewed over

SEC. 2.1 PROCESSES 87

a long enough time interval, all the processes have made progress, but at any given
instant only one process is actually running.

One program counter

— Four program counters
A Process
& switch 2 D — —
N 8 4
- § c _ _
o
c A l BY c l DY B| — —
& Al —
W D Time ——
(a) (b) ()

Figure 2-1. (a) Multiprogramming four programs. (b) Conceptual model of four
independent, sequential processes. (c) Only one program is active at once.

In this chapter, we will assume there is only one CPU. Increasingly, however,
that assumption is not true, since new chips are often multicore, with two, four, or
more cores. We will look at multicore chips and multiprocessors in general in
Chap. 8, but for the time being, it is simpler just to think of one CPU at a time. So
when we say that a CPU can really run only one process at a time, if there are two
cores (or CPUs) each of them can run only one process at a time.

With the CPU switching back and forth among the processes, the rate at which
a process performs its computation will not be uniform and probably not even
reproducible if the same processes are run again. Thus, processes must not be pro-
grammed with built-in assumptions about timing. Consider, for example, an audio
process that plays music to accompany a high-quality video run by another device.
Because the audio should start a little later than the video, it signals the video ser-
ver to start playing, and then runs an idle loop 10,000 times before playing back
the audio. All goes well, if the loop is a reliable timer, but if the CPU decides to
switch to another process during the idle loop, the audio process may not run again
until the corresponding video frames have already come and gone, and the video
and audio will be annoyingly out of sync. When a process has critical real-time re-
quirements like this, that is, particular events must occur within a specified number
of milliseconds, special measures must be taken to ensure that they do occur. Nor-
mally, however, most processes are not affected by the underlying multiprogram-
ming of the CPU or the relative speeds of different processes.

The difference between a process and a program is subtle, but absolutely cru-
cial. An analogy may help you here. Consider a culinary-minded computer scien-
tist who is baking a birthday cake for his young daughter. He has a birthday cake
recipe and a kitchen well stocked with all the input: flour, eggs, sugar, extract of
vanilla, and so on. In this analogy, the recipe is the program, that is, an algorithm
expressed in some suitable notation, the computer scientist is the processor (CPU),

88 PROCESSES AND THREADS CHAP. 2

and the cake ingredients are the input data. The process is the activity consisting of
our baker reading the recipe, fetching the ingredients, and baking the cake.

Now imagine that the computer scientist’s son comes running in screaming his
head off, saying that he has been stung by a bee. The computer scientist records
where he was in the recipe (the state of the current process is saved), gets out a first
aid book, and begins following the directions in it. Here we see the processor being
switched from one process (baking) to a higher-priority process (administering
medical care), each having a different program (recipe versus first aid book).
When the bee sting has been taken care of, the computer scientist goes back to his
cake, continuing at the point where he left off.

The key idea here is that a process is an activity of some kind. It has a pro-
gram, input, output, and a state. A single processor may be shared among several
processes, with some scheduling algorithm being accustomed to determine when to
stop work on one process and service a different one. In contrast, a program is
something that may be stored on disk, not doing anything.

It is worth noting that if a program is running twice, it counts as two processes.
For example, it is often possible to start a word processor twice or print two files at
the same time if two printers are available. The fact that two processes happen to
be running the same program does not matter; they are distinct processes. The op-
erating system may be able to share the code between them so only one copy is in
memory, but that is a technical detail that does not change the conceptual situation
of two processes running.

2.1.2 Process Creation

Operating systems need some way to create processes. In very simple sys-
tems, or in systems designed for running only a single application (e.g., the con-
troller in a microwave oven), it may be possible to have all the processes that will
ever be needed be present when the system comes up. In general-purpose systems,
however, some way is needed to create and terminate processes as needed during
operation. We will now look at some of the issues.

Four principal events cause processes to be created:

1. System initialization.

2. Execution of a process-creation system call by a running process.
3. A user request to create a new process.
4

Initiation of a batch job.

When an operating system is booted, typically numerous processes are created.
Some of these are foreground processes, that is, processes that interact with
(human) users and perform work for them. Others run in the background and are
not associated with particular users, but instead have some specific function. For

SEC. 2.1 PROCESSES 89

example, one background process may be designed to accept incoming email,
sleeping most of the day but suddenly springing to life when email arrives. Another
background process may be designed to accept incoming requests for Web pages
hosted on that machine, waking up when a request arrives to service the request.
Processes that stay in the background to handle some activity such as email, Web
pages, news, printing, and so on are called daemons. Large systems commonly
have dozens of them. In UNIX', the ps program can be used to list the running
processes. In Windows, the task manager can be used.

In addition to the processes created at boot time, new processes can be created
afterward as well. Often a running process will issue system calls to create one or
more new processes to help it do its job. Creating new processes is particularly use-
ful when the work to be done can easily be formulated in terms of several related,
but otherwise independent interacting processes. For example, if a large amount of
data is being fetched over a network for subsequent processing, it may be con-
venient to create one process to fetch the data and put them in a shared buffer while
a second process removes the data items and processes them. On a multiprocessor,
allowing each process to run on a different CPU may also make the job go faster.

In interactive systems, users can start a program by typing a command or (dou-
ble) clicking on anicon. Taking either of these actions starts a new process and runs
the selected program in it. In command-based UNIX systems running X, the new
process takes over the window in which it was started. In Windows, when a proc-
ess is started it does not have a window, but it can create one (or more) and most
do. In both systems, users may have multiple windows open at once, each running
some process. Using the mouse, the user can select a window and interact with the
process, for example, providing input when needed.

The last situation in which processes are created applies only to the batch sys-
tems found on large mainframes. Think of inventory management at the end of a
day at a chain of stores. Here users can submit batch jobs to the system (possibly
remotely). When the operating system decides that it has the resources to run an-
other job, it creates a new process and runs the next job from the input queue in it.

Technically, in all these cases, a new process is created by having an existing
process execute a process creation system call. That process may be a running user
process, a system process invoked from the keyboard or mouse, or a batch-man-
ager process. What that process does is execute a system call to create the new
process. This system call tells the operating system to create a new process and in-
dicates, directly or indirectly, which program to run in it.

In UNIX, there is only one system call to create a new process: fork. This call
creates an exact clone of the calling process. After the fork, the two processes, the
parent and the child, have the same memory image, the same environment strings,
and the same open files. That is all there is. Usually, the child process then ex-
ecutes execve or a similar system call to change its memory image and run a new

T In this chapter, UNIX should be interpreted as including almost all POSIX-based systems, including
Linux, FreeBSD, OS X, Solaris, etc., and to some extent, Android and iOS as well.

90 PROCESSES AND THREADS CHAP. 2

program. For example, when a user types a command, say, sort, to the shell, the
shell forks off a child process and the child executes sort. The reason for this two-
step process is to allow the child to manipulate its file descriptors after the fork but
before the execve in order to accomplish redirection of standard input, standard
output, and standard error.

In Windows, in contrast, a single Win32 function call, CreateProcess, handles
both process creation and loading the correct program into the new process. This
call has 10 parameters, which include the program to be executed, the com-
mand-line parameters to feed that program, various security attributes, bits that
control whether open files are inherited, priority information, a specification of the
window to be created for the process (if any), and a pointer to a structure in which
information about the newly created process is returned to the caller. In addition to
CreateProcess, Win32 has about 100 other functions for managing and synchro-
nizing processes and related topics.

In both UNIX and Windows systems, after a process is created, the parent and
child have their own distinct address spaces. If either process changes a word in its
address space, the change is not visible to the other process. In UNIX, the child’s
initial address space is a copy of the parent’s, but there are definitely two distinct
address spaces involved; no writable memory is shared. Some UNIX imple-
mentations share the program text between the two since that cannot be modified.
Alternatively, the child may share all of the parent’s memory, but in that case the
memory is shared copy-on-write, which means that whenever either of the two
wants to modify part of the memory, that chunk of memory is explicitly copied
first to make sure the modification occurs in a private memory area. Again, no
writable memory is shared. It is, however, possible for a newly created process to
share some of its creator’s other resources, such as open files. In Windows, the
parent’s and child’s address spaces are different from the start.

2.1.3 Process Termination

After a process has been created, it starts running and does whatever its job is.
However, nothing lasts forever, not even processes. Sooner or later the new proc-
ess will terminate, usually due to one of the following conditions:

Normal exit (voluntary).
Error exit (voluntary).

Fatal error (involuntary).

Ll e

Killed by another process (involuntary).

Most processes terminate because they have done their work. When a compiler
has compiled the program given to it, the compiler executes a system call to tell the
operating system that it is finished. This call is exit in UNIX and ExitProcess in

SEC. 2.1 PROCESSES 91

Windows. Screen-oriented programs also support voluntary termination. Word
processors, Internet browsers, and similar programs always have an icon or menu
item that the user can click to tell the process to remove any temporary files it has
open and then terminate.

The second reason for termination is that the process discovers a fatal error.
For example, if a user types the command

cc foo.c

to compile the program foo.c and no such file exists, the compiler simply
announces this fact and exits. Screen-oriented interactive processes generally do
not exit when given bad parameters. Instead they pop up a dialog box and ask the
user to try again.

The third reason for termination is an error caused by the process, often due to
a program bug. Examples include executing an illegal instruction, referencing
nonexistent memory, or dividing by zero. In some systems (e.g., UNIX), a process
can tell the operating system that it wishes to handle certain errors itself, in which
case the process is signaled (interrupted) instead of terminated when one of the er-
TOrs OCCUurs.

The fourth reason a process might terminate is that the process executes a sys-
tem call telling the operating system to kill some other process. In UNIX this call
is kill. The corresponding Win32 function is TerminateProcess. In both cases, the
killer must have the necessary authorization to do in the killee. In some systems,
when a process terminates, either voluntarily or otherwise, all processes it created
are immediately killed as well. Neither UNIX nor Windows works this way, how-
ever.

2.1.4 Process Hierarchies

In some systems, when a process creates another process, the parent process
and child process continue to be associated in certain ways. The child process can
itself create more processes, forming a process hierarchy. Note that unlike plants
and animals that use sexual reproduction, a process has only one parent (but zero,
one, two, or more children). So a process is more like a hydra than like, say, a cow.

In UNIX, a process and all of its children and further descendants together
form a process group. When a user sends a signal from the keyboard, the signal is
delivered to all members of the process group currently associated with the
keyboard (usually all active processes that were created in the current window).
Individually, each process can catch the signal, ignore the signal, or take the de-
fault action, which is to be killed by the signal.

As another example of where the process hierarchy plays a key role, let us look
at how UNIX initializes itself when it is started, just after the computer is booted.
A special process, called init, is present in the boot image. When it starts running,
it reads a file telling how many terminals there are. Then it forks off a new process

92 PROCESSES AND THREADS CHAP. 2

per terminal. These processes wait for someone to log in. If a login is successful,
the login process executes a shell to accept commands. These commands may start
up more processes, and so forth. Thus, all the processes in the whole system be-
long to a single tree, with init at the root.

In contrast, Windows has no concept of a process hierarchy. All processes are
equal. The only hint of a process hierarchy is that when a process is created, the
parent is given a special token (called a handle) that it can use to control the child.
However, it is free to pass this token to some other process, thus invalidating the
hierarchy. Processes in UNIX cannot disinherit their children.

2.1.5 Process States

Although each process is an independent entity, with its own program counter
and internal state, processes often need to interact with other processes. One proc-
ess may generate some output that another process uses as input. In the shell com-
mand

cat chapter1 chapter2 chapter3 | grep tree

the first process, running cat, concatenates and outputs three files. The second
process, running grep, selects all lines containing the word “tree.” Depending on
the relative speeds of the two processes (which depends on both the relative com-
plexity of the programs and how much CPU time each one has had), it may happen
that grep is ready to run, but there is no input waiting for it. It must then block
until some input is available.

When a process blocks, it does so because logically it cannot continue, typi-
cally because it is waiting for input that is not yet available. It is also possible for a
process that is conceptually ready and able to run to be stopped because the operat-
ing system has decided to allocate the CPU to another process for a while. These
two conditions are completely different. In the first case, the suspension is inher-
ent in the problem (you cannot process the user’s command line until it has been
typed). In the second case, it is a technicality of the system (not enough CPUs to
give each process its own private processor). In Fig.2-2 we see a state diagram
showing the three states a process may be in:

1. Running (actually using the CPU at that instant).
2. Ready (runnable; temporarily stopped to let another process run).
3. Blocked (unable to run until some external event happens).

Logically, the first two states are similar. In both cases the process is willing to
run, only in the second one, there is temporarily no CPU available for it. The third
state is fundamentally different from the first two in that the process cannot run,
even if the CPU is idle and has nothing else to do.

SEC. 2.1 PROCESSES 93

@ 1. Process blocks for input
2. Scheduler picks another process
Blocked

3. Scheduler picks this process
4. Input becomes available

Figure 2-2. A process can be in running, blocked, or ready state. Transitions be-

tween these states are as shown.

Four transitions are possible among these three states, as shown. Transition 1
occurs when the operating system discovers that a process cannot continue right
now. In some systems the process can execute a system call, such as pause, to get
into blocked state. In other systems, including UNIX, when a process reads from a
pipe or special file (e.g., a terminal) and there is no input available, the process is
automatically blocked.

Transitions 2 and 3 are caused by the process scheduler, a part of the operating
system, without the process even knowing about them. Transition 2 occurs when
the scheduler decides that the running process has run long enough, and it is time
to let another process have some CPU time. Transition 3 occurs when all the other
processes have had their fair share and it is time for the first process to get the CPU
to run again. The subject of scheduling, that is, deciding which process should run
when and for how long, is an important one; we will look at it later in this chapter.
Many algorithms have been devised to try to balance the competing demands of ef-
ficiency for the system as a whole and fairness to individual processes. We will
study some of them later in this chapter.

Transition 4 occurs when the external event for which a process was waiting
(such as the arrival of some input) happens. If no other process is running at that
instant, transition 3 will be triggered and the process will start running. Otherwise
it may have to wait in ready state for a little while until the CPU is available and its
turn comes.

Using the process model, it becomes much easier to think about what is going
on inside the system. Some of the processes run programs that carry out commands
typed in by a user. Other processes are part of the system and handle tasks such as
carrying out requests for file services or managing the details of running a disk or a
tape drive. When a disk interrupt occurs, the system makes a decision to stop run-
ning the current process and run the disk process, which was blocked waiting for
that interrupt. Thus, instead of thinking about interrupts, we can think about user
processes, disk processes, terminal processes, and so on, which block when they
are waiting for something to happen. When the disk has been read or the character
typed, the process waiting for it is unblocked and is eligible to run again.

This view gives rise to the model shown in Fig. 2-3. Here the lowest level of
the operating system is the scheduler, with a variety of processes on top of it. All

94 PROCESSES AND THREADS CHAP. 2

the interrupt handling and details of actually starting and stopping processes are
hidden away in what is here called the scheduler, which is actually not much code.
The rest of the operating system is nicely structured in process form. Few real sys-
tems are as nicely structured as this, however.

Processes

Scheduler

Figure 2-3. The lowest layer of a process-structured operating system handles
interrupts and scheduling. Above that layer are sequential processes.

2.1.6 Implementation of Processes

To implement the process model, the operating system maintains a table (an
array of structures), called the process table, with one entry per process. (Some
authors call these entries process control blocks.) This entry contains important
information about the process’ state, including its program counter, stack pointer,
memory allocation, the status of its open files, its accounting and scheduling infor-
mation, and everything else about the process that must be saved when the process
is switched from running to ready or blocked state so that it can be restarted later
as if it had never been stopped.

Figure 2-4 shows some of the key fields in a typical system. The fields in the
first column relate to process management. The other two relate to memory man-
agement and file management, respectively. It should be noted that precisely
which fields the process table has is highly system dependent, but this figure gives
a general idea of the kinds of information needed.

Now that we have looked at the process table, it is possible to explain a little
more about how the illusion of multiple sequential processes is maintained on one
(or each) CPU. Associated with each I/O class is a location (typically at a fixed lo-
cation near the bottom of memory) called the interrupt vector. It contains the ad-
dress of the interrupt service procedure. Suppose that user process 3 is running
when a disk interrupt happens. User process 3’s program counter, program status
word, and sometimes one or more registers are pushed onto the (current) stack by
the interrupt hardware. The computer then jumps to the address specified in the in-
terrupt vector. That is all the hardware does. From here on, it is up to the software,
in particular, the interrupt service procedure.

All interrupts start by saving the registers, often in the process table entry for
the current process. Then the information pushed onto the stack by the interrupt is

SEC. 2.1 PROCESSES 95

Process management Memory management File management
Registers Pointer to text segment info Root directory
Program counter Pointer to data segment info Working directory
Program status word Pointer to stack segment info | File descriptors
Stack pointer User ID

Process state Group ID

Priority

Scheduling parameters

Process ID

Parent process

Process group

Signals

Time when process started
CPU time used

Children’s CPU time

Time of next alarm

Figure 2-4. Some of the fields of a typical process-table entry.

removed and the stack pointer is set to point to a temporary stack used by the proc-
ess handler. Actions such as saving the registers and setting the stack pointer can-
not even be expressed in high-level languages such as C, so they are performed by
a small assembly-language routine, usually the same one for all interrupts since the
work of saving the registers is identical, no matter what the cause of the interrupt
is.

When this routine is finished, it calls a C procedure to do the rest of the work
for this specific interrupt type. (We assume the operating system is written in C,
the usual choice for all real operating systems.) When it has done its job, possibly
making some process now ready, the scheduler is called to see who to run next.
After that, control is passed back to the assembly-language code to load up the reg-
isters and memory map for the now-current process and start it running. Interrupt
handling and scheduling are summarized in Fig. 2-5. It is worth noting that the de-
tails vary somewhat from system to system.

A process may be interrupted thousands of times during its execution, but the
key idea is that after each interrupt the interrupted process returns to precisely the
same state it was in before the interrupt occurred.

2.1.7 Modeling Multiprogramming

When multiprogramming is used, the CPU utilization can be improved.
Crudely put, if the average process computes only 20% of the time it is sitting in
memory, then with five processes in memory at once the CPU should be busy all
the time. This model is unrealistically optimistic, however, since it tacitly assumes
that all five processes will never be waiting for I/O at the same time.

96 PROCESSES AND THREADS CHAP. 2

. Hardware stacks program counter, etc.

. Hardware loads new program counter from interrupt vector.

. Assembly-language procedure saves registers.

. Assembly-language procedure sets up new stack.

. C interrupt service runs (typically reads and buffers input).

. Scheduler decides which process is to run next.

. C procedure returns to the assembly code.

. Assembly-language procedure starts up new current process.

0o~NOO O WD =

Figure 2-5. Skeleton of what the lowest level of the operating system does when
an interrupt occurs.

A better model is to look at CPU usage from a probabilistic viewpoint. Sup-
pose that a process spends a fraction p of its time waiting for I/O to complete. With
n processes in memory at once, the probability that all n processes are waiting for
I/O (in which case the CPU will be idle) is p". The CPU utilization is then given
by the formula

CPU utilization=1 — p"

Figure 2-6 shows the CPU utilization as a function of n, which is called the degree
of multiprogramming.

20% /O wait
100 |~ < s

50% I/0 wait

80 |-
60 — 80% /0 wait
40 |

20

CPU utilization (in percent)

\ \ \ \ \ \ \ \ \ \
0 1 2 3 4 5 6 7 8 9 10
Degree of multiprogramming

Figure 2-6. CPU utilization as a function of the number of processes in memory.

From the figure it is clear that if processes spend 80% of their time waiting for
I/O, at least 10 processes must be in memory at once to get the CPU waste below
10%. When you realize that an interactive process waiting for a user to type some-
thing at a terminal (or click on an icon) is in I/O wait state, it should be clear that
I/O wait times of 80% and more are not unusual. But even on servers, processes
doing a lot of disk I/O will often have this percentage or more.

SEC. 2.1 PROCESSES 97

For the sake of accuracy, it should be pointed out that the probabilistic model
just described is only an approximation. It implicitly assumes that all n processes
are independent, meaning that it is quite acceptable for a system with five proc-
esses in memory to have three running and two waiting. But with a single CPU, we
cannot have three processes running at once, so a process becoming ready while
the CPU is busy will have to wait. Thus the processes are not independent. A more
accurate model can be constructed using queueing theory, but the point we are
making —multiprogramming lets processes use the CPU when it would otherwise
become idle—is, of course, still valid, even if the true curves of Fig. 2-6 are slight-
ly different from those shown in the figure.

Even though the model of Fig.2-6 is simple-minded, it can nevertheless be
used to make specific, although approximate, predictions about CPU performance.
Suppose, for example, that a computer has 8 GB of memory, with the operating
system and its tables taking up 2 GB and each user program also taking up 2 GB.
These sizes allow three user programs to be in memory at once. With an 80% aver-
age 1/0 wait, we have a CPU utilization (ignoring operating system overhead) of
1 — 0.8 or about 49%. Adding another 8 GB of memory allows the system to go
from three-way multiprogramming to seven-way multiprogramming, thus raising
the CPU utilization to 79%. In other words, the additional 8 GB will raise the
throughput by 30%.

Adding yet another 8 GB would increase CPU utilization only from 79% to
91%, thus raising the throughput by only another 12%. Using this model, the com-
puter’s owner might decide that the first addition was a good investment but that
the second was not.

2.2 THREADS

In traditional operating systems, each process has an address space and a single
thread of control. In fact, that is almost the definition of a process. Nevertheless,
in many situations, it is desirable to have multiple threads of control in the same
address space running in quasi-parallel, as though they were (almost) separate
processes (except for the shared address space). In the following sections we will
discuss these situations and their implications.

2.2.1 Thread Usage

Why would anyone want to have a kind of process within a process? It turns
out there are several reasons for having these miniprocesses, called threads. Let
us now examine some of them. The main reason for having threads is that in many
applications, multiple activities are going on at once. Some of these may block
from time to time. By decomposing such an application into multiple sequential
threads that run in quasi-parallel, the programming model becomes simpler.

98 PROCESSES AND THREADS CHAP. 2

We have seen this argument once before. It is precisely the argument for hav-
ing processes. Instead, of thinking about interrupts, timers, and context switches,
we can think about parallel processes. Only now with threads we add a new ele-
ment: the ability for the parallel entities to share an address space and all of its data
among themselves. This ability is essential for certain applications, which is why
having multiple processes (with their separate address spaces) will not work.

A second argument for having threads is that since they are lighter weight than
processes, they are easier (i.e., faster) to create and destroy than processes. In
many systems, creating a thread goes 10-100 times faster than creating a process.
When the number of threads needed changes dynamically and rapidly, this proper-
ty is useful to have.

A third reason for having threads is also a performance argument. Threads
yield no performance gain when all of them are CPU bound, but when there is sub-
stantial computing and also substantial I/O, having threads allows these activities
to overlap, thus speeding up the application.

Finally, threads are useful on systems with multiple CPUs, where real paral-
lelism is possible. We will come back to this issue in Chap. 8.

It is easiest to see why threads are useful by looking at some concrete ex-
amples. As a first example, consider a word processor. Word processors usually
display the document being created on the screen formatted exactly as it will ap-
pear on the printed page. In particular, all the line breaks and page breaks are in
their correct and final positions, so that the user can inspect them and change the
document if need be (e.g., to eliminate widows and orphans—incomplete top and
bottom lines on a page, which are considered esthetically unpleasing).

Suppose that the user is writing a book. From the author’s point of view, it is
easiest to keep the entire book as a single file to make it easier to search for topics,
perform global substitutions, and so on. Alternatively, each chapter might be a sep-
arate file. However, having every section and subsection as a separate file is a real
nuisance when global changes have to be made to the entire book, since then hun-
dreds of files have to be individually edited, one at a time. For example, if propo-
sed standard xxxx is approved just before the book goes to press, all occurrences of
“Draft Standard xxxx” have to be changed to “Standard xxxx” at the last minute.
If the entire book is one file, typically a single command can do all the substitu-
tions. In contrast, if the book is spread over 300 files, each one must be edited sep-
arately.

Now consider what happens when the user suddenly deletes one sentence from
page 1 of an 800-page book. After checking the changed page for correctness, he
now wants to make another change on page 600 and types in a command telling
the word processor to go to that page (possibly by searching for a phrase occurring
only there). The word processor is now forced to reformat the entire book up to
page 600 on the spot because it does not know what the first line of page 600 will
be until it has processed all the previous pages. There may be a substantial delay
before page 600 can be displayed, leading to an unhappy user.

SEC. 2.2 THREADS 99

Threads can help here. Suppose that the word processor is written as a two-
threaded program. One thread interacts with the user and the other handles refor-
matting in the background. As soon as the sentence is deleted from page 1, the
interactive thread tells the reformatting thread to reformat the whole book. Mean-
while, the interactive thread continues to listen to the keyboard and mouse and re-
sponds to simple commands like scrolling page 1 while the other thread is comput-
ing madly in the background. With a little luck, the reformatting will be completed
before the user asks to see page 600, so it can be displayed instantly.

While we are at it, why not add a third thread? Many word processors have a
feature of automatically saving the entire file to disk every few minutes to protect
the user against losing a day’s work in the event of a program crash, system crash,
or power failure. The third thread can handle the disk backups without interfering
with the other two. The situation with three threads is shown in Fig. 2-7.

Kernel

Disk

Figure 2-7. A word processor with three threads.

If the program were single-threaded, then whenever a disk backup started,
commands from the keyboard and mouse would be ignored until the backup was
finished. The user would surely perceive this as sluggish performance. Alterna-
tively, keyboard and mouse events could interrupt the disk backup, allowing good
performance but leading to a complex interrupt-driven programming model. With
three threads, the programming model is much simpler. The first thread just inter-
acts with the user. The second thread reformats the document when told to. The
third thread writes the contents of RAM to disk periodically.

It should be clear that having three separate processes would not work here be-
cause all three threads need to operate on the document. By having three threads
instead of three processes, they share a common memory and thus all have access
to the document being edited. With three processes this would be impossible.

100 PROCESSES AND THREADS CHAP. 2

An analogous situation exists with many other interactive programs. For exam-
ple, an electronic spreadsheet is a program that allows a user to maintain a matrix,
some of whose elements are data provided by the user. Other elements are com-
puted based on the input data using potentially complex formulas. When a user
changes one element, many other elements may have to be recomputed. By having
a background thread do the recomputation, the interactive thread can allow the user
to make additional changes while the computation is going on. Similarly, a third
thread can handle periodic backups to disk on its own.

Now consider yet another example of where threads are useful: a server for a
Website. Requests for pages come in and the requested page is sent back to the cli-
ent. At most Websites, some pages are more commonly accessed than other pages.
For example, Sony’s home page is accessed far more than a page deep in the tree
containing the technical specifications of any particular camera. Web servers use
this fact to improve performance by maintaining a collection of heavily used pages
in main memory to eliminate the need to go to disk to get them. Such a collection
is called a cache and is used in many other contexts as well. We saw CPU caches
in Chap. 1, for example.

One way to organize the Web server is shown in Fig. 2-8(a). Here one thread,
the dispatcher, reads incoming requests for work from the network. After examin-
ing the request, it chooses an idle (i.e., blocked) worker thread and hands it the
request, possibly by writing a pointer to the message into a special word associated
with each thread. The dispatcher then wakes up the sleeping worker, moving it
from blocked state to ready state.

Web server process

|
!

Dispatcher thread

Worker thread User
space

Web page cache
Kernel
Kernel space

Network
connection

Figure 2-8. A multithreaded Web server.

When the worker wakes up, it checks to see if the request can be satisfied from
the Web page cache, to which all threads have access. If not, it starts a read opera-
tion to get the page from the disk and blocks until the disk operation completes.

SEC. 2.2 THREADS 101

When the thread blocks on the disk operation, another thread is chosen to run, pos-
sibly the dispatcher, in order to acquire more work, or possibly another worker that
is now ready to run.

This model allows the server to be written as a collection of sequential threads.
The dispatcher’s program consists of an infinite loop for getting a work request and
handing it off to a worker. Each worker’s code consists of an infinite loop consist-
ing of accepting a request from the dispatcher and checking the Web cache to see if
the page is present. If so, it is returned to the client, and the worker blocks waiting
for a new request. If not, it gets the page from the disk, returns it to the client, and
blocks waiting for a new request.

A rough outline of the code is given in Fig.2-9. Here, as in the rest of this
book, TRUE is assumed to be the constant 1. Also, buf and page are structures ap-
propriate for holding a work request and a Web page, respectively.

while (TRUE) { while (TRUE) {
get_next_request(&buf); wait_for_work(&buf)
handoff_work(&buf); look_for_page_in_cache(&buf, &page);
} if (page_not_in_cache(&page))

read_page_from_disk(&buf, &page);
return_page(&page);

() (b)

Figure 2-9. A rough outline of the code for Fig. 2-8. (a) Dispatcher thread.
(b) Worker thread.

Consider how the Web server could be written in the absence of threads. One
possibility is to have it operate as a single thread. The main loop of the Web server
gets a request, examines it, and carries it out to completion before getting the next
one. While waiting for the disk, the server is idle and does not process any other
incoming requests. If the Web server is running on a dedicated machine, as is
commonly the case, the CPU is simply idle while the Web server is waiting for the
disk. The net result is that many fewer requests/sec can be processed. Thus,
threads gain considerable performance, but each thread is programmed sequential-
ly, in the usual way.

So far we have seen two possible designs: a multithreaded Web server and a
single-threaded Web server. Suppose that threads are not available but the system
designers find the performance loss due to single threading unacceptable. If a
nonblocking version of the read system call is available, a third approach is pos-
sible. When a request comes in, the one and only thread examines it. If it can be
satisfied from the cache, fine, but if not, a nonblocking disk operation is started.

The server records the state of the current request in a table and then goes and
gets the next event. The next event may either be a request for new work or a reply
from the disk about a previous operation. If it is new work, that work is started. If
it is a reply from the disk, the relevant information is fetched from the table and the

102 PROCESSES AND THREADS CHAP. 2

reply processed. With nonblocking disk 1/O, a reply probably will have to take the
form of a signal or interrupt.

In this design, the “sequential process” model that we had in the first two
cases is lost. The state of the computation must be explicitly saved and restored in
the table every time the server switches from working on one request to another. In
effect, we are simulating the threads and their stacks the hard way. A design like
this, in which each computation has a saved state, and there exists some set of
events that can occur to change the state, is called a finite-state machine. This
concept is widely used throughout computer science.

It should now be clear what threads have to offer. They make it possible to
retain the idea of sequential processes that make blocking calls (e.g., for disk 1/O)
and still achieve parallelism. Blocking system calls make programming easier, and
parallelism improves performance. The single-threaded server retains the simpli-
city of blocking system calls but gives up performance. The third approach
achieves high performance through parallelism but uses nonblocking calls and in-
terrupts and thus is hard to program. These models are summarized in Fig. 2-10.

Model Characteristics

Threads Parallelism, blocking system calls
Single-threaded process | No parallelism, blocking system calls
Finite-state machine Parallelism, nonblocking system calls, interrupts

Figure 2-10. Three ways to construct a server.

A third example where threads are useful is in applications that must process
very large amounts of data. The normal approach is to read in a block of data,
process it, and then write it out again. The problem here is that if only blocking
system calls are available, the process blocks while data are coming in and data are
going out. Having the CPU go idle when there is lots of computing to do is clearly
wasteful and should be avoided if possible.

Threads offer a solution. The process could be structured with an input thread,
a processing thread, and an output thread. The input thread reads data into an input
buffer. The processing thread takes data out of the input buffer, processes them,
and puts the results in an output buffer. The output buffer writes these results back
to disk. In this way, input, output, and processing can all be going on at the same
time. Of course, this model works only if a system call blocks only the calling
thread, not the entire process.

2.2.2 The Classical Thread Model

Now that we have seen why threads might be useful and how they can be used,
let us investigate the idea a bit more closely. The process model is based on two in-
dependent concepts: resource grouping and execution. Sometimes it is useful to

SEC. 2.2 THREADS 103

separate them; this is where threads come in. First we will look at the classical
thread model; after that we will examine the Linux thread model, which blurs the
line between processes and threads.

One way of looking at a process is that it is a way to group related resources
together. A process has an address space containing program text and data, as well
as other resources. These resources may include open files, child processes, pend-
ing alarms, signal handlers, accounting information, and more. By putting them
together in the form of a process, they can be managed more easily.

The other concept a process has is a thread of execution, usually shortened to
just thread. The thread has a program counter that keeps track of which instruc-
tion to execute next. It has registers, which hold its current working variables. It
has a stack, which contains the execution history, with one frame for each proce-
dure called but not yet returned from. Although a thread must execute in some
process, the thread and its process are different concepts and can be treated sepa-
rately. Processes are used to group resources together; threads are the entities
scheduled for execution on the CPU.

What threads add to the process model is to allow multiple executions to take
place in the same process environment, to a large degree independent of one anoth-
er. Having multiple threads running in parallel in one process is analogous to hav-
ing multiple processes running in parallel in one computer. In the former case, the
threads share an address space and other resources. In the latter case, processes
share physical memory, disks, printers, and other resources. Because threads have
some of the properties of processes, they are sometimes called lightweight pro-
cesses. The term multithreading is also used to describe the situation of allowing
multiple threads in the same process. As we saw in Chap. 1, some CPUs have
direct hardware support for multithreading and allow thread switches to happen on
a nanosecond time scale.

In Fig. 2-11(a) we see three traditional processes. Each process has its own ad-
dress space and a single thread of control. In contrast, in Fig. 2-11(b) we see a sin-
gle process with three threads of control. Although in both cases we have three
threads, in Fig. 2-11(a) each of them operates in a different address space, whereas
in Fig. 2-11(b) all three of them share the same address space.

When a multithreaded process is run on a single-CPU system, the threads take
turns running. In Fig. 2-1, we saw how multiprogramming of processes works. By
switching back and forth among multiple processes, the system gives the illusion
of separate sequential processes running in parallel. Multithreading works the same
way. The CPU switches rapidly back and forth among the threads, providing the
illusion that the threads are running in parallel, albeit on a slower CPU than the
real one. With three compute-bound threads in a process, the threads would appear
to be running in parallel, each one on a CPU with one-third the speed of the real
CPU.

Different threads in a process are not as independent as different processes. All
threads have exactly the same address space, which means that they also share the

104 PROCESSES AND THREADS CHAP. 2

Process 1 Process 2 Process 3 Process
User
space
Thread Thread
Kernel K |
space Kernel erne

(a) (b)

Figure 2-11. (a) Three processes each with one thread. (b) One process with
three threads.

same global variables. Since every thread can access every memory address within
the process’ address space, one thread can read, write, or even wipe out another
thread’s stack. There is no protection between threads because (1) it is impossible,
and (2) it should not be necessary. Unlike different processes, which may be from
different users and which may be hostile to one another, a process is always owned
by a single user, who has presumably created multiple threads so that they can
cooperate, not fight. In addition to sharing an address space, all the threads can
share the same set of open files, child processes, alarms, and signals, an so on, as
shown in Fig. 2-12. Thus, the organization of Fig. 2-11(a) would be used when the
three processes are essentially unrelated, whereas Fig.2-11(b) would be ap-
propriate when the three threads are actually part of the same job and are actively
and closely cooperating with each other.

Per-process items Per-thread items
Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms
Signals and signal handlers
Accounting information

Figure 2-12. The first column lists some items shared by all threads in a process.
The second one lists some items private to each thread.

The items in the first column are process properties, not thread properties. For
example, if one thread opens a file, that file is visible to the other threads in the
process and they can read and write it. This is logical, since the process is the unit

SEC. 2.2 THREADS 105

of resource management, not the thread. If each thread had its own address space,
open files, pending alarms, and so on, it would be a separate process. What we are
trying to achieve with the thread concept is the ability for multiple threads of ex-
ecution to share a set of resources so that they can work together closely to per-
form some task.

Like a traditional process (i.e., a process with only one thread), a thread can be
in any one of several states: running, blocked, ready, or terminated. A running
thread currently has the CPU and is active. In contrast, a blocked thread is waiting
for some event to unblock it. For example, when a thread performs a system call to
read from the keyboard, it is blocked until input is typed. A thread can block wait-
ing for some external event to happen or for some other thread to unblock it. A
ready thread is scheduled to run and will as soon as its turn comes up. The tran-
sitions between thread states are the same as those between process states and are
illustrated in Fig. 2-2.

It is important to realize that each thread has its own stack, as illustrated in
Fig. 2-13. Each thread’s stack contains one frame for each procedure called but
not yet returned from. This frame contains the procedure’s local variables and the
return address to use when the procedure call has finished. For example, if proce-
dure X calls procedure Y and Y calls procedure Z, then while Z is executing, the
frames for X, Y, and Z will all be on the stack. Each thread will generally call dif-
ferent procedures and thus have a different execution history. This is why each
thread needs its own stack.

Thread 2

Thread 1 \ Thread 3
\ /

| — Process

Thread 1's — ﬁ E H — Thread 3's stack

stack

Kernel

Figure 2-13. Each thread has its own stack.

When multithreading is present, processes usually start with a single thread
present. This thread has the ability to create new threads by calling a library proce-
dure such as thread_create. A parameter to thread _create specifies the name of a
procedure for the new thread to run. It is not necessary (or even possible) to speci-
fy anything about the new thread’s address space, since it automatically runs in the

106 PROCESSES AND THREADS CHAP. 2

address space of the creating thread. Sometimes threads are hierarchical, with a
parent-child relationship, but often no such relationship exists, with all threads
being equal. With or without a hierarchical relationship, the creating thread is
usually returned a thread identifier that names the new thread.

When a thread has finished its work, it can exit by calling a library procedure,
say, thread_exit. It then vanishes and is no longer schedulable. In some thread
systems, one thread can wait for a (specific) thread to exit by calling a procedure,
for example, thread_join. This procedure blocks the calling thread until a (specif-
ic) thread has exited. In this regard, thread creation and termination is very much
like process creation and termination, with approximately the same options as well.

Another common thread call is thread_yield, which allows a thread to volun-
tarily give up the CPU to let another thread run. Such a call is important because
there is no clock interrupt to actually enforce multiprogramming as there is with
processes. Thus it is important for threads to be polite and voluntarily surrender the
CPU from time to time to give other threads a chance to run. Other calls allow one
thread to wait for another thread to finish some work, for a thread to announce that
it has finished some work, and so on.

While threads are often useful, they also introduce a number of complications
into the programming model. To start with, consider the effects of the UNIX fork
system call. If the parent process has multiple threads, should the child also have
them? If not, the process may not function properly, since all of them may be es-
sential.

However, if the child process gets as many threads as the parent, what happens
if a thread in the parent was blocked on a read call, say, from the keyboard? Are
two threads now blocked on the keyboard, one in the parent and one in the child?
When a line is typed, do both threads get a copy of it? Only the parent? Only the
child? The same problem exists with open network connections.

Another class of problems is related to the fact that threads share many data
structures. What happens if one thread closes a file while another one is still read-
ing from it? Suppose one thread notices that there is too little memory and starts
allocating more memory. Partway through, a thread switch occurs, and the new
thread also notices that there is too little memory and also starts allocating more
memory. Memory will probably be allocated twice. These problems can be solved
with some effort, but careful thought and design are needed to make multithreaded
programs work correctly.

2.2.3 POSIX Threads

To make it possible to write portable threaded programs, IEEE has defined a
standard for threads in IEEE standard 1003.1c. The threads package it defines is
called Pthreads. Most UNIX systems support it. The standard defines over 60
function calls, which is far too many to go over here. Instead, we will just describe

SEC. 2.2 THREADS 107

a few of the major ones to give an idea of how it works. The calls we will describe
below are listed in Fig. 2-14.

Thread call Description

Pthread_create Create a new thread

Pthread_exit Terminate the calling thread

Pthread_join Wait for a specific thread to exit

Pthread_yield Release the CPU to let another thread run
Pthread_attr_init Create and initialize a thread’s attribute structure
Pthread_attr_destroy | Remove a thread’s attribute structure

Figure 2-14. Some of the Pthreads function calls.

All Pthreads threads have certain properties. Each one has an identifier, a set of
registers (including the program counter), and a set of attributes, which are stored
in a structure. The attributes include the stack size, scheduling parameters, and
other items needed to use the thread.

A new thread is created using the pthread_create call. The thread identifier of
the newly created thread is returned as the function value. This call is intentionally
very much like the fork system call (except with parameters), with the thread iden-
tifier playing the role of the PID, mostly for identifying threads referenced in other
calls.

When a thread has finished the work it has been assigned, it can terminate by
calling pthread _exit. This call stops the thread and releases its stack.

Often a thread needs to wait for another thread to finish its work and exit be-
fore continuing. The thread that is waiting calls pthread_join to wait for a specific
other thread to terminate. The thread identifier of the thread to wait for is given as
a parameter.

Sometimes it happens that a thread is not logically blocked, but feels that it has
run long enough and wants to give another thread a chance to run. It can accom-
plish this goal by calling pthread_yield. There is no such call for processes be-
cause the assumption there is that processes are fiercely competitive and each
wants all the CPU time it can get. However, since the threads of a process are
working together and their code is invariably written by the same programmer,
sometimes the programmer wants them to give each other another chance.

The next two thread calls deal with attributes. Pthread_attr_init creates the
attribute structure associated with a thread and initializes it to the default values.
These values (such as the priority) can be changed by manipulating fields in the
attribute structure.

Finally, pthread_attr _destroy removes a thread’s attribute structure, freeing up
its memory. It does not affect threads using it; they continue to exist.

To get a better feel for how Pthreads works, consider the simple example of
Fig. 2-15. Here the main program loops NUMBER_OF_THREADS times, creating

108 PROCESSES AND THREADS CHAP. 2

a new thread on each iteration, after announcing its intention. If the thread creation
fails, it prints an error message and then exits. After creating all the threads, the
main program exits.

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

#define NUMBER_OF_THREADS 10
void *print_hello_world(void *tid)

/* This function prints the thread’s identifier and then exits. */
printf("Hello World. Greetings from thread %d\n", tid);
pthread_exit(NULL);

1

int main(int argc, char *argvf[])

{
/* The main program creates 10 threads and then exits. */
pthread_t threads[NUMBER_OF_THREADS];
int status, i;

for(i=0; i < NUMBER_OF_THREADS; i++) {
printf("Main here. Creating thread %d\n", i);
status = pthread_create(&threads]i], NULL, print_hello_world, (void *)i);

if (status !=0) {
printf("Oops. pthread _create returned error code %d\n", status);
exit(-1);
}
}
exit(NULL);

Figure 2-15. An example program using threads.

When a thread is created, it prints a one-line message announcing itself, then it
exits. The order in which the various messages are interleaved is nondeterminate
and may vary on consecutive runs of the program.

The Pthreads calls described above are not the only ones. We will examine
some of the others after we have discussed process and thread synchronization.

2.24 Implementing Threads in User Space
There are two main places to implement threads: user space and the kernel.

The choice is a bit controversial, and a hybrid implementation is also possible. We
will now describe these methods, along with their advantages and disadvantages.

SEC. 2.2 THREADS 109

The first method is to put the threads package entirely in user space. The ker-
nel knows nothing about them. As far as the kernel is concerned, it is managing
ordinary, single-threaded processes. The first, and most obvious, advantage is that
a user-level threads package can be implemented on an operating system that does
not support threads. All operating systems used to fall into this category, and even
now some still do. With this approach, threads are implemented by a library.

All of these implementations have the same general structure, illustrated in
Fig. 2-16(a). The threads run on top of a run-time system, which is a collection of
procedures that manage threads. We have seen four of these already: pthread _cre-
ate, pthread_exit, pthread_join, and pthread_yield, but usually there are more.

Process Thread Process Thread

_/ __/

=lam 1

-

};g;r;eel{ / Kernel E Kernel /El %

LY
/ ! A} 7
Run-time Thread Process Process Thread
system table table table table

Figure 2-16. (a) A user-level threads package. (b) A threads package managed
by the kernel.

When threads are managed in user space, each process needs its own private
thread table to keep track of the threads in that process. This table is analogous to
the kernel’s process table, except that it keeps track only of the per-thread proper-
ties, such as each thread’s program counter, stack pointer, registers, state, and so
forth. The thread table is managed by the run-time system. When a thread is
moved to ready state or blocked state, the information needed to restart it is stored
in the thread table, exactly the same way as the kernel stores information about
processes in the process table.

When a thread does something that may cause it to become blocked locally, for
example, waiting for another thread in its process to complete some work, it calls a
run-time system procedure. This procedure checks to see if the thread must be put
into blocked state. If so, it stores the thread’s registers (i.e., its own) in the thread
table, looks in the table for a ready thread to run, and reloads the machine registers
with the new thread’s saved values. As soon as the stack pointer and program
counter have been switched, the new thread comes to life again automatically. If

110 PROCESSES AND THREADS CHAP. 2

the machine happens to have an instruction to store all the registers and another
one to load them all, the entire thread switch can be done in just a handful of in-
structions. Doing thread switching like this is at least an order of magnitude—
maybe more—faster than trapping to the kernel and is a strong argument in favor
of user-level threads packages.

However, there is one key difference with processes. When a thread is finished
running for the moment, for example, when it calls thread_yield, the code of
thread_yield can save the thread’s information in the thread table itself. Fur-
thermore, it can then call the thread scheduler to pick another thread to run. The
procedure that saves the thread’s state and the scheduler are just local procedures,
so invoking them is much more efficient than making a kernel call. Among other
issues, no trap is needed, no context switch is needed, the memory cache need not
be flushed, and so on. This makes thread scheduling very fast.

User-level threads also have other advantages. They allow each process to have
its own customized scheduling algorithm. For some applications, for example,
those with a garbage-collector thread, not having to worry about a thread being
stopped at an inconvenient moment is a plus. They also scale better, since kernel
threads invariably require some table space and stack space in the kernel, which
can be a problem if there are a very large number of threads.

Despite their better performance, user-level threads packages have some major
problems. First among these is the problem of how blocking system calls are im-
plemented. Suppose that a thread reads from the keyboard before any keys have
been hit. Letting the thread actually make the system call is unacceptable, since
this will stop all the threads. One of the main goals of having threads in the first
place was to allow each one to use blocking calls, but to prevent one blocked
thread from affecting the others. With blocking system calls, it is hard to see how
this goal can be achieved readily.

The system calls could all be changed to be nonblocking (e.g., a read on the
keyboard would just return O bytes if no characters were already buffered), but re-
quiring changes to the operating system is unattractive. Besides, one argument for
user-level threads was precisely that they could run with existing operating sys-
tems. In addition, changing the semantics of read will require changes to many
user programs.

Another alternative is available in the event that it is possible to tell in advance
if a call will block. In most versions of UNIX, a system call, select, exists, which
allows the caller to tell whether a prospective read will block. When this call is
present, the library procedure read can be replaced with a new one that first does a
select call and then does the read call only if it is safe (i.e., will not block). If the
read call will block, the call is not made. Instead, another thread is run. The next
time the run-time system gets control, it can check again to see if the read is now
safe. This approach requires rewriting parts of the system call library, and is inef-
ficient and inelegant, but there is little choice. The code placed around the system
call to do the checking is called a jacket or wrapper.

SEC. 2.2 THREADS 111

Somewhat analogous to the problem of blocking system calls is the problem of
page faults. We will study these in Chap. 3. For the moment, suffice it to say that
computers can be set up in such a way that not all of the program is in main memo-
ry at once. If the program calls or jumps to an instruction that is not in memory, a
page fault occurs and the operating system will go and get the missing instruction
(and its neighbors) from disk. This is called a page fault. The process is blocked
while the necessary instruction is being located and read in. If a thread causes a
page fault, the kernel, unaware of even the existence of threads, naturally blocks
the entire process until the disk I/O is complete, even though other threads might
be runnable.01

Another problem with user-level thread packages is that if a thread starts run-
ning, no other thread in that process will ever run unless the first thread voluntarily
gives up the CPU. Within a single process, there are no clock interrupts, making it
impossible to schedule processes round-robin fashion (taking turns). Unless a
thread enters the run-time system of its own free will, the scheduler will never get a
chance.

One possible solution to the problem of threads running forever is to have the
run-time system request a clock signal (interrupt) once a second to give it control,
but this, too, is crude and messy to program. Periodic clock interrupts at a higher
frequency are not always possible, and even if they are, the total overhead may be
substantial. Furthermore, a thread might also need a clock interrupt, interfering
with the run-time system’s use of the clock.

Another, and really the most devastating, argument against user-level threads is
that programmers generally want threads precisely in applications where the
threads block often, as, for example, in a multithreaded Web server. These threads
are constantly making system calls. Once a trap has occurred to the kernel to carry
out the system call, it is hardly any more work for the kernel to switch threads if
the old one has blocked, and having the kernel do this eliminates the need for con-
stantly making select system calls that check to see if read system calls are safe.
For applications that are essentially entirely CPU bound and rarely block, what is
the point of having threads at all? No one would seriously propose computing the
first n prime numbers or playing chess using threads because there is nothing to be
gained by doing it that way.

2.2.5 Implementing Threads in the Kernel

Now let us consider having the kernel know about and manage the threads. No
run-time system is needed in each, as shown in Fig.2-16(b). Also, there is no
thread table in each process. Instead, the kernel has a thread table that keeps track
of all the threads in the system. When a thread wants to create a new thread or
destroy an existing thread, it makes a kernel call, which then does the creation or
destruction by updating the kernel thread table.

112 PROCESSES AND THREADS CHAP. 2

The kernel’s thread table holds each thread’s registers, state, and other infor-
mation. The information is the same as with user-level threads, but now kept in the
kernel instead of in user space (inside the run-time system). This information is a
subset of the information that traditional kernels maintain about their single-
threaded processes, that is, the process state. In addition, the kernel also maintains
the traditional process table to keep track of processes.

All calls that might block a thread are implemented as system calls, at consid-
erably greater cost than a call to a run-time system procedure. When a thread
blocks, the kernel, at its option, can run either another thread from the same proc-
ess (if one is ready) or a thread from a different process. With user-level threads,
the run-time system keeps running threads from its own process until the kernel
takes the CPU away from it (or there are no ready threads left to run).

Due to the relatively greater cost of creating and destroying threads in the ker-
nel, some systems take an environmentally correct approach and recycle their
threads. When a thread is destroyed, it is marked as not runnable, but its kernel
data structures are not otherwise affected. Later, when a new thread must be creat-
ed, an old thread is reactivated, saving some overhead. Thread recycling is also
possible for user-level threads, but since the thread-management overhead is much
smaller, there is less incentive to do this.

Kernel threads do not require any new, nonblocking system calls. In addition,
if one thread in a process causes a page fault, the kernel can easily check to see if
the process has any other runnable threads, and if so, run one of them while wait-
ing for the required page to be brought in from the disk. Their main disadvantage is
that the cost of a system call is substantial, so if thread operations (creation, termi-
nation, etc.) a common, much more overhead will be incurred.

While kernel threads solve some problems, they do not solve all problems. For
example, what happens when a multithreaded process forks? Does the new proc-
ess have as many threads as the old one did, or does it have just one? In many
cases, the best choice depends on what the process is planning to do next. If it is
going to call exec to start a new program, probably one thread is the correct choice,
but if it continues to execute, reproducing all the threads is probably best.

Another issue is signals. Remember that signals are sent to processes, not to
threads, at least in the classical model. When a signal comes in, which thread
should handle it? Possibly threads could register their interest in certain signals, so
when a signal came in it would be given to the thread that said it wants it. But what
happens if two or more threads register for the same signal? These are only two of
the problems threads introduce, and there are more.

2.2.6 Hybrid Implementations
Various ways have been investigated to try to combine the advantages of user-

level threads with kernel-level threads. One way is use kernel-level threads and
then multiplex user-level threads onto some or all of them, as shown in Fig. 2-17.

SEC. 2.2 THREADS 113

When this approach is used, the programmer can determine how many kernel
threads to use and how many user-level threads to multiplex on each one. This
model gives the ultimate in flexibility.

Multiple user threads
on a kernel thread

\]

User
space

-

Kernel
Kernel ~— Kernel thread space

Figure 2-17. Multiplexing user-level threads onto kernel-level threads.

With this approach, the kernel is aware of only the kernel-level threads and
schedules those. Some of those threads may have multiple user-level threads multi-
plexed on top of them. These user-level threads are created, destroyed, and sched-
uled just like user-level threads in a process that runs on an operating system with-
out multithreading capability. In this model, each kernel-level thread has some set
of user-level threads that take turns using it.

2.2.7 Scheduler Activations

While kernel threads are better than user-level threads in some key ways, they
are also indisputably slower. As a consequence, researchers have looked for ways
to improve the situation without giving up their good properties. Below we will de-
scribe an approach devised by Anderson et al. (1992), called scheduler acti-
vations. Related work is discussed by Edler et al. (1988) and Scott et al. (1990).

The goals of the scheduler activation work are to mimic the functionality of
kernel threads, but with the better performance and greater flexibility usually asso-
ciated with threads packages implemented in user space. In particular, user threads
should not have to make special nonblocking system calls or check in advance if it
is safe to make certain system calls. Nevertheless, when a thread blocks on a sys-
tem call or on a page fault, it should be possible to run other threads within the
same process, if any are ready.

Efficiency is achieved by avoiding unnecessary transitions between user and
kernel space. If a thread blocks waiting for another thread to do something, for ex-
ample, there is no reason to involve the kernel, thus saving the overhead of the

114 PROCESSES AND THREADS CHAP. 2

kernel-user transition. The user-space run-time system can block the synchronizing
thread and schedule a new one by itself.

When scheduler activations are used, the kernel assigns a certain number of
virtual processors to each process and lets the (user-space) run-time system allo-
cate threads to processors. This mechanism can also be used on a multiprocessor
where the virtual processors may be real CPUs. The number of virtual processors
allocated to a process is initially one, but the process can ask for more and can also
return processors it no longer needs. The kernel can also take back virtual proc-
essors already allocated in order to assign them to more needy processes.

The basic idea that makes this scheme work is that when the kernel knows that
a thread has blocked (e.g., by its having executed a blocking system call or caused
a page fault), the kernel notifies the process’ run-time system, passing as parame-
ters on the stack the number of the thread in question and a description of the event
that occurred. The notification happens by having the kernel activate the run-time
system at a known starting address, roughly analogous to a signal in UNIX. This
mechanism is called an upcall.

Once activated, the run-time system can reschedule its threads, typically by
marking the current thread as blocked and taking another thread from the ready
list, setting up its registers, and restarting it. Later, when the kernel learns that the
original thread can run again (e.g., the pipe it was trying to read from now contains
data, or the page it faulted over has been brought in from disk), it makes another
upcall to the run-time system to inform it. The run-time system can either restart
the blocked thread immediately or put it on the ready list to be run later.

When a hardware interrupt occurs while a user thread is running, the inter-
rupted CPU switches into kernel mode. If the interrupt is caused by an event not of
interest to the interrupted process, such as completion of another process’ 1/0O,
when the interrupt handler has finished, it puts the interrupted thread back in the
state it was in before the interrupt. If, however, the process is interested in the in-
terrupt, such as the arrival of a page needed by one of the process’ threads, the in-
terrupted thread is not restarted. Instead, it is suspended, and the run-time system is
started on that virtual CPU, with the state of the interrupted thread on the stack. It
is then up to the run-time system to decide which thread to schedule on that CPU:
the interrupted one, the newly ready one, or some third choice.

An objection to scheduler activations is the fundamental reliance on upcalls, a
concept that violates the structure inherent in any layered system. Normally, layer
n offers certain services that layer n + 1 can call on, but layer n may not call proce-
dures in layer n + 1. Upcalls do not follow this fundamental principle.

2.2.8 Pop-Up Threads

Threads are frequently useful in distributed systems. An important example is
how incoming messages, for example requests for service, are handled. The tradi-
tional approach is to have a process or thread that is blocked on a receive system

SEC. 2.2 THREADS 115

call waiting for an incoming message. When a message arrives, it accepts the mes-
sage, unpacks it, examines the contents, and processes it.

However, a completely different approach is also possible, in which the arrival
of a message causes the system to create a new thread to handle the message. Such
a thread is called a pop-up thread and is illustrated in Fig. 2-18. A key advantage
of pop-up threads is that since they are brand new, they do not have any his-
tory —registers, stack, whatever—that must be restored. Each one starts out fresh
and each one is identical to all the others. This makes it possible to create such a
thread quickly. The new thread is given the incoming message to process. The re-
sult of using pop-up threads is that the latency between message arrival and the
start of processing can be made very short.

Pop-up thread
Process created to handle

incoming message

Existing thread

/

Incoming message l
Network

(a) (b)

Figure 2-18. Creation of a new thread when a message arrives. (a) Before the
message arrives. (b) After the message arrives.

Some advance planning is needed when pop-up threads are used. For example,
in which process does the thread run? If the system supports threads running in the
kernel’s context, the thread may run there (which is why we have not shown the
kernel in Fig. 2-18). Having the pop-up thread run in kernel space is usually easier
and faster than putting it in user space. Also, a pop-up thread in kernel space can
easily access all the kernel’s tables and the I/O devices, which may be needed for
interrupt processing. On the other hand, a buggy kernel thread can do more dam-
age than a buggy user thread. For example, if it runs too long and there is no way
to preempt it, incoming data may be permanently lost.

116 PROCESSES AND THREADS CHAP. 2

2.2.9 Making Single-Threaded Code Multithreaded

Many existing programs were written for single-threaded processes. Convert-
ing these to multithreading is much trickier than it may at first appear. Below we
will examine just a few of the pitfalls.

As a start, the code of a thread normally consists of multiple procedures, just
like a process. These may have local variables, global variables, and parameters.
Local variables and parameters do not cause any trouble, but variables that are glo-
bal to a thread but not global to the entire program are a problem. These are vari-
ables that are global in the sense that many procedures within the thread use them
(as they might use any global variable), but other threads should logically leave
them alone.

As an example, consider the errno variable maintained by UNIX. When a
process (or a thread) makes a system call that fails, the error code is put into errno.
In Fig. 2-19, thread 1 executes the system call access to find out if it has permis-
sion to access a certain file. The operating system returns the answer in the global
variable errno. After control has returned to thread 1, but before it has a chance to
read errno, the scheduler decides that thread 1 has had enough CPU time for the
moment and decides to switch to thread 2. Thread 2 executes an open call that
fails, which causes errno to be overwritten and thread 1’s access code to be lost
forever. When thread 1 starts up later, it will read the wrong value and behave
incorrectly.

Thread 1 Thread 2

é

Access (errno set)

<— Time

}

Open (errno overwritten)

;

Errno inspected

Figure 2-19. Conflicts between threads over the use of a global variable.

Various solutions to this problem are possible. One is to prohibit global vari-
ables altogether. However worthy this ideal may be, it conflicts with much existing
software. Another is to assign each thread its own private global variables, as
shown in Fig. 2-20. In this way, each thread has its own private copy of errno and
other global variables, so conflicts are avoided. In effect, this decision creates a

SEC. 2.2 THREADS 117

new scoping level, variables visible to all the procedures of a thread (but not to
other threads), in addition to the existing scoping levels of variables visible only to
one procedure and variables visible everywhere in the program.

Thread 1's
code

Thread 2's
code

Thread 1's
stack ~

Thread 2's
V stack

Thread 1's
globals

Thread 2's
globals

Figure 2-20. Threads can have private global variables.

Accessing the private global variables is a bit tricky, however, since most pro-
gramming languages have a way of expressing local variables and global variables,
but not intermediate forms. It is possible to allocate a chunk of memory for the
globals and pass it to each procedure in the thread as an extra parameter. While
hardly an elegant solution, it works.

Alternatively, new library procedures can be introduced to create, set, and read
these threadwide global variables. The first call might look like this:

create_global("bufptr");

It allocates storage for a pointer called bufptr on the heap or in a special storage
area reserved for the calling thread. No matter where the storage is allocated, only
the calling thread has access to the global variable. If another thread creates a glo-
bal variable with the same name, it gets a different storage location that does not
conflict with the existing one.

Two calls are needed to access global variables: one for writing them and the
other for reading them. For writing, something like

set_global("bufptr", &buf);

will do. It stores the value of a pointer in the storage location previously created
by the call to create_global. To read a global variable, the call might look like

bufptr = read_global("bufptr");

It returns the address stored in the global variable, so its data can be accessed.

118 PROCESSES AND THREADS CHAP. 2

The next problem in turning a single-threaded program into a multithreaded
one is that many library procedures are not reentrant. That is, they were not de-
signed to have a second call made to any given procedure while a previous call has
not yet finished. For example, sending a message over the network may well be
programmed to assemble the message in a fixed buffer within the library, then to
trap to the kernel to send it. What happens if one thread has assembled its message
in the buffer, then a clock interrupt forces a switch to a second thread that im-
mediately overwrites the buffer with its own message?

Similarly, memory-allocation procedures such as malloc in UNIX, maintain
crucial tables about memory usage, for example, a linked list of available chunks
of memory. While malloc is busy updating these lists, they may temporarily be in
an inconsistent state, with pointers that point nowhere. If a thread switch occurs
while the tables are inconsistent and a new call comes in from a different thread, an
invalid pointer may be used, leading to a program crash. Fixing all these problems
effectively means rewriting the entire library. Doing so is a nontrivial activity with
a real possibility of introducing subtle errors.

A different solution is to provide each procedure with a jacket that sets a bit to
mark the library as in use. Any attempt for another thread to use a library proce-
dure while a previous call has not yet completed is blocked. Although this ap-
proach can be made to work, it greatly eliminates potential parallelism.

Next, consider signals. Some signals are logically thread specific, whereas oth-
ers are not. For example, if a thread calls alarm, it makes sense for the resulting
signal to go to the thread that made the call. However, when threads are imple-
mented entirely in user space, the kernel does not even know about threads and can
hardly direct the signal to the right one. An additional complication occurs if a
process may only have one alarm pending at a time and several threads call alarm
independently.

Other signals, such as keyboard interrupt, are not thread specific. Who should
catch them? One designated thread? All the threads? A newly created pop-up
thread? Furthermore, what happens if one thread changes the signal handlers with-
out telling other threads? And what happens if one thread wants to catch a particu-
lar signal (say, the user hitting CTRL-C), and another thread wants this signal to
terminate the process? This situation can arise if one or more threads run standard
library procedures and others are user-written. Clearly, these wishes are incompati-
ble. In general, signals are difficult enough to manage in a single-threaded envi-
ronment. Going to a multithreaded environment does not make them any easier to
handle.

One last problem introduced by threads is stack management. In many sys-
tems, when a process’ stack overflows, the kernel just provides that process with
more stack automatically. When a process has multiple threads, it must also have
multiple stacks. If the kernel is not aware of all these stacks, it cannot grow them
automatically upon stack fault. In fact, it may not even realize that a memory fault
is related to the growth of some thread’s stack.

SEC. 2.2 THREADS 119

These problems are certainly not insurmountable, but they do show that just
introducing threads into an existing system without a fairly substantial system
redesign is not going to work at all. The semantics of system calls may have to be
redefined and libraries rewritten, at the very least. And all of these things must be
done in such a way as to remain backward compatible with existing programs for
the limiting case of a process with only one thread. For additional information
about threads, see Hauser et al. (1993), Marsh et al. (1991), and Rodrigues et al.
(2010).

2.3 INTERPROCESS COMMUNICATION

Processes frequently need to communicate with other processes. For example,
in a shell pipeline, the output of the first process must be passed to the second
process, and so on down the line. Thus there is a need for communication between
processes, preferably in a well-structured way not using interrupts. In the follow-
ing sections we will look at some of the issues related to this InterProcess Com-
munication, or IPC.

Very briefly, there are three issues here. The first was alluded to above: how
one process can pass information to another. The second has to do with making
sure two or more processes do not get in each other’s way, for example, two proc-
esses in an airline reservation system each trying to grab the last seat on a plane for
a different customer. The third concerns proper sequencing when dependencies are
present: if process A produces data and process B prints them, B has to wait until A
has produced some data before starting to print. We will examine all three of these
issues starting in the next section.

It is also important to mention that two of these issues apply equally well to
threads. The first one—passing information—is easy for threads since they share a
common address space (threads in different address spaces that need to communi-
cate fall under the heading of communicating processes). However, the other
two—keeping out of each other’s hair and proper sequencing—apply equally well
to threads. The same problems exist and the same solutions apply. Below we will
discuss the problem in the context of processes, but please keep in mind that the
same problems and solutions also apply to threads.

2.3.1 Race Conditions

In some operating systems, processes that are working together may share
some common storage that each one can read and write. The shared storage may be
in main memory (possibly in a kernel data structure) or it may be a shared file; the
location of the shared memory does not change the nature of the communication or
the problems that arise. To see how interprocess communication works in practice,
let us now consider a simple but common example: a print spooler. When a process

120 PROCESSES AND THREADS CHAP. 2

wants to print a file, it enters the file name in a special spooler directory. Another
process, the printer daemon, periodically checks to see if there are any files to be
printed, and if there are, it prints them and then removes their names from the di-
rectory.

Imagine that our spooler directory has a very large number of slots, numbered
0,1, 2, ..., each one capable of holding a file name. Also imagine that there are two
shared variables, out, which points to the next file to be printed, and in, which
points to the next free slot in the directory. These two variables might well be kept
in a two-word file available to all processes. At a certain instant, slots O to 3 are
empty (the files have already been printed) and slots 4 to 6 are full (with the names
of files queued for printing). More or less simultaneously, processes A and B
decide they want to queue a file for printing. This situation is shown in Fig. 2-21.

Spooler

directory
4 abc | out=4 |
6 prog.n
7 | in=7 |

.

Figure 2-21. Two processes want to access shared memory at the same time.

In jurisdictions where Murphy’s lawT is applicable, the following could hap-
pen. Process A reads in and stores the value, 7, in a local variable called
next_free_slot. Just then a clock interrupt occurs and the CPU decides that proc-
ess A has run long enough, so it switches to process B. Process B also reads in and
also gets a 7. It, too, stores it in its local variable next_free_slot. At this instant
both processes think that the next available slot is 7.

Process B now continues to run. It stores the name of its file in slot 7 and
updates in to be an 8. Then it goes off and does other things.

Eventually, process A runs again, starting from the place it left off. It looks at
next_free_slot, finds a 7 there, and writes its file name in slot 7, erasing the name
that process B just put there. Then it computes next_free _slot + 1, which is 8, and
sets in to 8. The spooler directory is now internally consistent, so the printer dae-
mon will not notice anything wrong, but process B will never receive any output.
User B will hang around the printer for years, wistfully hoping for output that

T If something can go wrong, it will.

SEC. 2.3 INTERPROCESS COMMUNICATION 121

never comes. Situations like this, where two or more processes are reading or writ-
ing some shared data and the final result depends on who runs precisely when, are
called race conditions. Debugging programs containing race conditions is no fun
at all. The results of most test runs are fine, but once in a blue moon something
weird and unexplained happens. Unfortunately, with increasing parallelism due to
increasing numbers of cores, race condition are becoming more common.

2.3.2 Critical Regions

How do we avoid race conditions? The key to preventing trouble here and in
many other situations involving shared memory, shared files, and shared everything
else is to find some way to prohibit more than one process from reading and writ-
ing the shared data at the same time. Put in other words, what we need is mutual
exclusion, that is, some way of making sure that if one process is using a shared
variable or file, the other processes will be excluded from doing the same thing.
The difficulty above occurred because process B started using one of the shared
variables before process A was finished with it. The choice of appropriate primitive
operations for achieving mutual exclusion is a major design issue in any operating
system, and a subject that we will examine in great detail in the following sections.

The problem of avoiding race conditions can also be formulated in an abstract
way. Part of the time, a process is busy doing internal computations and other
things that do not lead to race conditions. However, sometimes a process has to ac-
cess shared memory or files, or do other critical things that can lead to races. That
part of the program where the shared memory is accessed is called the critical
region or critical section. If we could arrange matters such that no two processes
were ever in their critical regions at the same time, we could avoid races.

Although this requirement avoids race conditions, it is not sufficient for having
parallel processes cooperate correctly and efficiently using shared data. We need
four conditions to hold to have a good solution:

1. No two processes may be simultaneously inside their critical regions.
2. No assumptions may be made about speeds or the number of CPUs.

3. No process running outside its critical region may block any process.
4

No process should have to wait forever to enter its critical region.

In an abstract sense, the behavior that we want is shown in Fig. 2-22. Here
process A enters its critical region at time 7. A little later, at time 7, process B at-
tempts to enter its critical region but fails because another process is already in its
critical region and we allow only one at a time. Consequently, B is temporarily sus-
pended until time 75 when A leaves its critical region, allowing B to enter im-
mediately. Eventually B leaves (at T,) and we are back to the original situation
with no processes in their critical regions.

122 PROCESSES AND THREADS CHAP. 2

A enters critical region

/ A leaves critical region

ProcessA ——

B attempts to B enters B leaves
enter critical critical region critical region

Al A

| |
B blocked 1 1
T, T

[
|
|
|
|
|
|
Process B 1
|
1

4
Time ————>

Figure 2-22. Mutual exclusion using critical regions.

2.3.3 Mutual Exclusion with Busy Waiting

In this section we will examine various proposals for achieving mutual exclu-
sion, so that while one process is busy updating shared memory in its critical re-
gion, no other process will enter its critical region and cause trouble.

Disabling Interrupts

On a single-processor system, the simplest solution is to have each process dis-
able all interrupts just after entering its critical region and re-enable them just be-
fore leaving it. With interrupts disabled, no clock interrupts can occur. The CPU is
only switched from process to process as a result of clock or other interrupts, after
all, and with interrupts turned off the CPU will not be switched to another process.
Thus, once a process has disabled interrupts, it can examine and update the shared
memory without fear that any other process will intervene.

This approach is generally unattractive because it is unwise to give user proc-
esses the power to turn off interrupts. What if one of them did it, and never turned
them on again? That could be the end of the system. Furthermore, if the system is
a multiprocessor (with two or more CPUs) disabling interrupts affects only the
CPU that executed the disable instruction. The other ones will continue running
and can access the shared memory.

On the other hand, it is frequently convenient for the kernel itself to disable in-
terrupts for a few instructions while it is updating variables or especially lists. If
an interrupt occurrs while the list of ready processes, for example, is in an incon-
sistent state, race conditions could occur. The conclusion is: disabling interrupts is

SEC. 2.3 INTERPROCESS COMMUNICATION 123

often a useful technique within the operating system itself but is not appropriate as
a general mutual exclusion mechanism for user processes.

The possibility of achieving mutual exclusion by disabling interrupts—even
within the kernel—is becoming less every day due to the increasing number of
multicore chips even in low-end PCs. Two cores are already common, four are
present in many machines, and eight, 16, or 32 are not far behind. In a multicore
(i.e., multiprocessor system) disabling the interrupts of one CPU does not prevent
other CPUs from interfering with operations the first CPU is performing. Conse-
quently, more sophisticated schemes are needed.

Lock Variables

As a second attempt, let us look for a software solution. Consider having a sin-
gle, shared (lock) variable, initially 0. When a process wants to enter its critical re-
gion, it first tests the lock. If the lock is O, the process sets it to 1 and enters the
critical region. If the lock is already 1, the process just waits until it becomes 0.
Thus, a 0 means that no process is in its critical region, and a 1 means that some
process is in its critical region.

Unfortunately, this idea contains exactly the same fatal flaw that we saw in the
spooler directory. Suppose that one process reads the lock and sees that it is 0. Be-
fore it can set the lock to 1, another process is scheduled, runs, and sets the lock to
1. When the first process runs again, it will also set the lock to 1, and two proc-
esses will be in their critical regions at the same time.

Now you might think that we could get around this problem by first reading
out the lock value, then checking it again just before storing into it, but that really
does not help. The race now occurs if the second process modifies the lock just
after the first process has finished its second check.

Strict Alternation

A third approach to the mutual exclusion problem is shown in Fig. 2-23. This
program fragment, like nearly all the others in this book, is written in C. C was
chosen here because real operating systems are virtually always written in C (or
occasionally C++), but hardly ever in languages like Java, Python, or Haskell. C is
powerful, efficient, and predictable, characteristics critical for writing operating
systems. Java, for example, is not predictable because it might run out of storage at
a critical moment and need to invoke the garbage collector to reclaim memory at a
most inopportune time. This cannot happen in C because there is no garbage col-
lection in C. A quantitative comparison of C, C++, Java, and four other languages
is given by Prechelt (2000).

In Fig. 2-23, the integer variable turn, initially 0, keeps track of whose turn it is
to enter the critical region and examine or update the shared memory. Initially,
process O inspects furn, finds it to be 0, and enters its critical region. Process 1 also

124 PROCESSES AND THREADS CHAP. 2

while (TRUE) { while (TRUE) {
while (turn != 0) /* loop */ ; while (turn 1= 1) /* loop */;
critical _region(); critical_region();
turn =1; turn = 0;
noncritical _region(); noncritical _region();

(a) (b)

Figure 2-23. A proposed solution to the critical-region problem. (a) Process 0.
(b) Process 1. In both cases, be sure to note the semicolons terminating the while
statements.

finds it to be 0 and therefore sits in a tight loop continually testing turn to see when
it becomes 1. Continuously testing a variable until some value appears is called
busy waiting. It should usually be avoided, since it wastes CPU time. Only when
there is a reasonable expectation that the wait will be short is busy waiting used. A
lock that uses busy waiting is called a spin lock.

When process 0 leaves the critical region, it sets turn to 1, to allow process 1 to
enter its critical region. Suppose that process 1 finishes its critical region quickly,
so that both processes are in their noncritical regions, with turn set to 0. Now
process 0 executes its whole loop quickly, exiting its critical region and setting turn
to 1. At this point turn is 1 and both processes are executing in their noncritical re-
gions.

Suddenly, process O finishes its noncritical region and goes back to the top of
its loop. Unfortunately, it is not permitted to enter its critical region now, because
turn is 1 and process 1 is busy with its noncritical region. It hangs in its while loop
until process 1 sets furn to 0. Put differently, taking turns is not a good idea when
one of the processes is much slower than the other.

This situation violates condition 3 set out above: process 0 is being blocked by
a process not in its critical region. Going back to the spooler directory discussed
above, if we now associate the critical region with reading and writing the spooler
directory, process 0 would not be allowed to print another file because process 1
was doing something else.

In fact, this solution requires that the two processes strictly alternate in enter-
ing their critical regions, for example, in spooling files. Neither one would be per-
mitted to spool two in a row. While this algorithm does avoid all races, it is not
really a serious candidate as a solution because it violates condition 3.

Peterson’s Solution

By combining the idea of taking turns with the idea of lock variables and warn-
ing variables, a Dutch mathematician, T. Dekker, was the first one to devise a soft-
ware solution to the mutual exclusion problem that does not require strict alterna-
tion. For a discussion of Dekker’s algorithm, see Dijkstra (1965).

SEC. 2.3 INTERPROCESS COMMUNICATION 125

In 1981, G. L. Peterson discovered a much simpler way to achieve mutual
exclusion, thus rendering Dekker’s solution obsolete. Peterson’s algorithm is
shown in Fig. 2-24. This algorithm consists of two procedures written in ANSI C,
which means that function prototypes should be supplied for all the functions de-
fined and used. However, to save space, we will not show prototypes here or later.

#define FALSE 0
#define TRUE 1

#define N 2 /* number of processes */

int turn; /* whose turn is it? */

int interested[N]; /* all values initially 0 (FALSE) */

void enter_region(int process); /* process is 0 or 1 */
int other; /* number of the other process */
other = 1 — process; /* the opposite of process */
interested[process] = TRUE; /* show that you are interested */
turn = process; /* set flag */

while (turn == process && interested[other] == TRUE) /* null statement */ ;

}

void leave _region(int process) /* process: who is leaving */

{
}

interested[process] = FALSE; /* indicate departure from critical region */

Figure 2-24. Peterson’s solution for achieving mutual exclusion.

Before using the shared variables (i.e., before entering its critical region), each
process calls enter_region with its own process number, 0 or 1, as parameter. This
call will cause it to wait, if need be, until it is safe to enter. After it has finished
with the shared variables, the process calls leave_region to indicate that it is done
and to allow the other process to enter, if it so desires.

Let us see how this solution works. Initially neither process is in its critical re-
gion. Now process O calls enter_region. It indicates its interest by setting its array
element and sets turn to 0. Since process 1 is not interested, enter_region returns
immediately. If process 1 now makes a call to enter_region, it will hang there
until interested[0] goes to FALSE, an event that happens only when process 0 calls
leave_region to exit the critical region.

Now consider the case that both processes call enter_region almost simultan-
eously. Both will store their process number in furn. Whichever store is done last
is the one that counts; the first one is overwritten and lost. Suppose that process 1
stores last, so turn is 1. When both processes come to the while statement, process
0 executes it zero times and enters its critical region. Process 1 loops and does not
enter its critical region until process 0 exits its critical region.

126 PROCESSES AND THREADS CHAP. 2

The TSL Instruction

Now let us look at a proposal that requires a little help from the hardware.
Some computers, especially those designed with multiple processors in mind, have
an instruction like

TSL RX,LOCK

(Test and Set Lock) that works as follows. It reads the contents of the memory
word lock into register RX and then stores a nonzero value at the memory address
lock. The operations of reading the word and storing into it are guaranteed to be
indivisible —no other processor can access the memory word until the instruction is
finished. The CPU executing the TSL instruction locks the memory bus to prohibit
other CPUs from accessing memory until it is done.

It is important to note that locking the memory bus is very different from dis-
abling interrupts. Disabling interrupts then performing a read on a memory word
followed by a write does not prevent a second processor on the bus from accessing
the word between the read and the write. In fact, disabling interrupts on processor
1 has no effect at all on processor 2. The only way to keep processor 2 out of the
memory until processor 1 is finished is to lock the bus, which requires a special
hardware facility (basically, a bus line asserting that the bus is locked and not avail-
able to processors other than the one that locked it).

To use the TSL instruction, we will use a shared variable, lock, to coordinate
access to shared memory. When lock is 0, any process may set it to 1 using the TSL
instruction and then read or write the shared memory. When it is done, the process
sets lock back to 0 using an ordinary move instruction.

How can this instruction be used to prevent two processes from simultaneously
entering their critical regions? The solution is given in Fig. 2-25. There a four-in-
struction subroutine in a fictitious (but typical) assembly language is shown. The
first instruction copies the old value of /ock to the register and then sets lock to 1.
Then the old value is compared with 0. If it is nonzero, the lock was already set, so
the program just goes back to the beginning and tests it again. Sooner or later it
will become 0 (when the process currently in its critical region is done with its crit-
ical region), and the subroutine returns, with the lock set. Clearing the lock is very
simple. The program just stores a 0 in lock. No special synchronization instruc-
tions are needed.

One solution to the critical-region problem is now easy. Before entering its
critical region, a process calls enter_region, which does busy waiting until the lock
is free; then it acquires the lock and returns. After leaving the critical region the
process calls leave_region, which stores a O in lock. As with all solutions based on
critical regions, the processes must call enter_region and leave _region at the cor-
rect times for the method to work. If one process cheats, the mutual exclusion will
fail. In other words, critical regions work only if the processes cooperate.

SEC. 2.3 INTERPROCESS COMMUNICATION 127

enter_region:

TSL REGISTER,LOCK | copy lock to register and set lock to 1

CMP REGISTER,#0 | was lock zero?

JNE enter_region | if it was not zero, lock was set, so loop

RET | return to caller; critical region entered
leave _region:

MOVE LOCK,#0 | store a 0 in lock

RET | return to caller

Figure 2-25. Entering and leaving a critical region using the TSL instruction.

An alternative instruction to TSL is XCHG, which exchanges the contents of two
locations atomically, for example, a register and a memory word. The code is
shown in Fig. 2-26, and, as can be seen, is essentially the same as the solution with
TSL. All Intel x86 CPUs use XCHG instruction for low-level synchronization.

enter_region:

MOVE REGISTER,#1 | put a 1 in the register
XCHG REGISTER,LOCK | swap the contents of the register and lock variable
CMP REGISTER,#0 | was lock zero?
JNE enter_region | if it was non zero, lock was set, so loop
RET | return to caller; critical region entered
leave _region:
MOVE LOCK,#0 | store a 0 in lock
RET | return to caller

Figure 2-26. Entering and leaving a critical region using the XCHG instruction.

2.34 Sleep and Wakeup

Both Peterson’s solution and the solutions using TSL or XCHG are correct, but
both have the defect of requiring busy waiting. In essence, what these solutions do
is this: when a process wants to enter its critical region, it checks to see if the entry
is allowed. If it is not, the process just sits in a tight loop waiting until it is.

Not only does this approach waste CPU time, but it can also have unexpected
effects. Consider a computer with two processes, H, with high priority, and L, with
low priority. The scheduling rules are such that H is run whenever it is in ready
state. At a certain moment, with L in its critical region, H becomes ready to run
(e.g., an I/O operation completes). H now begins busy waiting, but since L is never

128 PROCESSES AND THREADS CHAP. 2

scheduled while H is running, L never gets the chance to leave its critical region, so
H loops forever. This situation is sometimes referred to as the priority inversion
problem.

Now let us look at some interprocess communication primitives that block in-
stead of wasting CPU time when they are not allowed to enter their critical regions.
One of the simplest is the pair sleep and wakeup. Sleep is a system call that
causes the caller to block, that is, be suspended until another process wakes it up.
The wakeup call has one parameter, the process to be awakened. Alternatively,
both sleep and wakeup each have one parameter, a memory address used to match
up sleeps with wakeups.

The Producer-Consumer Problem

As an example of how these primitives can be used, let us consider the pro-
ducer-consumer problem (also known as the bounded-buffer problem). Two
processes share a common, fixed-size buffer. One of them, the producer, puts infor-
mation into the buffer, and the other one, the consumer, takes it out. (It is also pos-
sible to generalize the problem to have m producers and n consumers, but we will
consider only the case of one producer and one consumer because this assumption
simplifies the solutions.)

Trouble arises when the producer wants to put a new item in the buffer, but it is
already full. The solution is for the producer to go to sleep, to be awakened when
the consumer has removed one or more items. Similarly, if the consumer wants to
remove an item from the buffer and sees that the buffer is empty, it goes to sleep
until the producer puts something in the buffer and wakes it up.

This approach sounds simple enough, but it leads to the same kinds of race
conditions we saw earlier with the spooler directory. To keep track of the number
of items in the buffer, we will need a variable, count. If the maximum number of
items the buffer can hold is N, the producer’s code will first test to see if count is N.
If it is, the producer will go to sleep; if it is not, the producer will add an item and
increment count.

The consumer’s code is similar: first test count to see if it is 0. If it is, go to
sleep; if it is nonzero, remove an item and decrement the counter. Each of the proc-
esses also tests to see if the other should be awakened, and if so, wakes it up. The
code for both producer and consumer is shown in Fig. 2-27.

To express system calls such as sleep and wakeup in C, we will show them as
calls to library routines. They are not part of the standard C library but presumably
would be made available on any system that actually had these system calls. The
procedures insert_item and remove_item, which are not shown, handle the
bookkeeping of putting items into the buffer and taking items out of the buffer.

Now let us get back to the race condition. It can occur because access to count
is unconstrained. As a consequence, the following situation could possibly occur.
The buffer is empty and the consumer has just read count to see if it is 0. At that

SEC. 2.3 INTERPROCESS COMMUNICATION 129
#define N 100 /* number of slots in the buffer */
int count = 0; /* number of items in the buffer */

void producer(void)

{

int item;

while (TRUE) { /* repeat forever */
item = produce_item(); /* generate next item */
if (count == N) sleep(); /* if buffer is full, go to sleep */
insert_item(item); /* put item in buffer */
count = count + 1; /* increment count of items in buffer */
if (count == 1) wakeup(consumer); /* was buffer empty? */

void consumer(void)

{

int item;

while (TRUE) { /* repeat forever */
if (count == 0) sleep(); /* if buffer is empty, got to sleep */
item = remove_item(); /* take item out of buffer */
count = count — 1; /* decrement count of items in buffer */
if (count == N — 1) wakeup(producer); /* was buffer full? */
consume_item(item); /* print item */

Figure 2-27. The producer-consumer problem with a fatal race condition.

instant, the scheduler decides to stop running the consumer temporarily and start
running the producer. The producer inserts an item in the buffer, increments count,
and notices that it is now 1. Reasoning that count was just 0, and thus the consu-
mer must be sleeping, the producer calls wakeup to wake the consumer up.

Unfortunately, the consumer is not yet logically asleep, so the wakeup signal is
lost. When the consumer next runs, it will test the value of count it previously read,
find it to be 0, and go to sleep. Sooner or later the producer will fill up the buffer
and also go to sleep. Both will sleep forever.

The essence of the problem here is that a wakeup sent to a process that is not
(yet) sleeping is lost. If it were not lost, everything would work. A quick fix is to
modify the rules to add a wakeup waiting bit to the picture. When a wakeup is
sent to a process that is still awake, this bit is set. Later, when the process tries to
go to sleep, if the wakeup waiting bit is on, it will be turned off, but the process
will stay awake. The wakeup waiting bit is a piggy bank for storing wakeup sig-
nals. The consumer clears the wakeup waiting bit in every iteration of the loop.

130 PROCESSES AND THREADS CHAP. 2

While the wakeup waiting bit saves the day in this simple example, it is easy to
construct examples with three or more processes in which one wakeup waiting bit
is insufficient. We could make another patch and add a second wakeup waiting bit,
or maybe 8 or 32 of them, but in principle the problem is still there.

2.3.5 Semaphores

This was the situation in 1965, when E. W. Dijkstra (1965) suggested using an
integer variable to count the number of wakeups saved for future use. In his pro-
posal, a new variable type, which he called a semaphore, was introduced. A sem-
aphore could have the value 0, indicating that no wakeups were saved, or some
positive value if one or more wakeups were pending.

Dijkstra proposed having two operations on semaphores, now usually called
down and up (generalizations of sleep and wakeup, respectively). The down oper-
ation on a semaphore checks to see if the value is greater than 0. If so, it decre-
ments the value (i.e., uses up one stored wakeup) and just continues. If the value is
0, the process is put to sleep without completing the down for the moment. Check-
ing the value, changing it, and possibly going to sleep, are all done as a single,
indivisible atomic action. It is guaranteed that once a semaphore operation has
started, no other process can access the semaphore until the operation has com-
pleted or blocked. This atomicity is absolutely essential to solving synchronization
problems and avoiding race conditions. Atomic actions, in which a group of related
operations are either all performed without interruption or not performed at all, are
extremely important in many other areas of computer science as well.

The up operation increments the value of the semaphore addressed. If one or
more processes were sleeping on that semaphore, unable to complete an earlier
down operation, one of them is chosen by the system (e.g., at random) and is al-
lowed to complete its down. Thus, after an up on a semaphore with processes
sleeping on it, the semaphore will still be O, but there will be one fewer process
sleeping on it. The operation of incrementing the semaphore and waking up one
process is also indivisible. No process ever blocks doing an up, just as no process
ever blocks doing a wakeup in the earlier model.

As an aside, in Dijkstra’s original paper, he used the names P and V instead of
down and up, respectively. Since these have no mnemonic significance to people
who do not speak Dutch and only marginal significance to those who do—
Proberen (try) and Verhogen (raise, make higher)—we will use the terms down and
up instead. These were first introduced in the Algol 68 programming language.

Solving the Producer-Consumer Problem Using Semaphores
Semaphores solve the lost-wakeup problem, as shown in Fig. 2-28. To make

them work correctly, it is essential that they be implemented in an indivisible way.
The normal way is to implement up and down as system calls, with the operating

SEC. 2.3 INTERPROCESS COMMUNICATION 131

system briefly disabling all interrupts while it is testing the semaphore, updating it,
and putting the process to sleep, if necessary. As all of these actions take only a
few instructions, no harm is done in disabling interrupts. If multiple CPUs are
being used, each semaphore should be protected by a lock variable, with the TSL or
XCHG instructions used to make sure that only one CPU at a time examines the
semaphore.

Be sure you understand that using TSL or XCHG to prevent several CPUs from
accessing the semaphore at the same time is quite different from the producer or
consumer busy waiting for the other to empty or fill the buffer. The semaphore op-
eration will take only a few microseconds, whereas the producer or consumer
might take arbitrarily long.

#define N 100 /* number of slots in the buffer */
typedef int semaphore; /* semaphores are a special kind of int */
semaphore mutex = 1; /* controls access to critical region */
semaphore empty = N; /* counts empty buffer slots */
semaphore full = 0; /* counts full buffer slots */

void producer(void)

{

int item;

while (TRUE) { /* TRUE is the constant 1 */
item = produce_item(); /* generate something to put in buffer */
down(&empty); /* decrement empty count */
down(&mutex); /* enter critical region */
insert_item(item); /* put new item in buffer */
up(&mutex); /* leave critical region */
up(&full); /* increment count of full slots */

void consumer(void)

{

int item;

while (TRUE) { /* infinite loop */
down(&full); /* decrement full count */
down(&mutex); /* enter critical region */
item = remove_item(); /* take item from buffer */
up(&mutex); /* leave critical region */
up(&empty); /* increment count of empty slots */
consume_item(item); /* do something with the item */

Figure 2-28. The producer-consumer problem using semaphores.

132 PROCESSES AND THREADS CHAP. 2

This solution uses three semaphores: one called full for counting the number of
slots that are full, one called empty for counting the number of slots that are empty,
and one called mutex to make sure the producer and consumer do not access the
buffer at the same time. Full is initially O, empty is initially equal to the number of
slots in the buffer, and mutex is initially 1. Semaphores that are initialized to 1 and
used by two or more processes to ensure that only one of them can enter its critical
region at the same time are called binary semaphores. If each process does a
down just before entering its critical region and an up just after leaving it, mutual
exclusion is guaranteed.

Now that we have a good interprocess communication primitive at our dis-
posal, let us go back and look at the interrupt sequence of Fig. 2-5 again. In a sys-
tem using semaphores, the natural way to hide interrupts is to have a semaphore,
initially set to 0, associated with each I/O device. Just after starting an I/O device,
the managing process does a down on the associated semaphore, thus blocking im-
mediately. When the interrupt comes in, the interrupt handler then does an up on
the associated semaphore, which makes the relevant process ready to run again. In
this model, step 5 in Fig. 2-5 consists of doing an up on the device’s semaphore, so
that in step 6 the scheduler will be able to run the device manager. Of course, if
several processes are now ready, the scheduler may choose to run an even more im-
portant process next. We will look at some of the algorithms used for scheduling
later on in this chapter.

In the example of Fig. 2-28, we have actually used semaphores in two different
ways. This difference is important enough to make explicit. The mutex semaphore
is used for mutual exclusion. It is designed to guarantee that only one process at a
time will be reading or writing the buffer and the associated variables. This mutual
exclusion is required to prevent chaos. We will study mutual exclusion and how to
achieve it in the next section.

The other use of semaphores is for synchronization. The full and empty sem-
aphores are needed to guarantee that certain event sequences do or do not occur. In
this case, they ensure that the producer stops running when the buffer is full, and
that the consumer stops running when it is empty. This use is different from mutual
exclusion.

2.3.6 Mutexes

When the semaphore’s ability to count is not needed, a simplified version of
the semaphore, called a mutex, is sometimes used. Mutexes are good only for man-
aging mutual exclusion to some shared resource or piece of code. They are easy
and efficient to implement, which makes them especially useful in thread packages
that are implemented entirely in user space.

A mutex is a shared variable that can be in one of two states: unlocked or
locked. Consequently, only 1 bit is required to represent it, but in practice an inte-
ger often is used, with 0 meaning unlocked and all other values meaning locked.

SEC. 2.3 INTERPROCESS COMMUNICATION 133

Two procedures are used with mutexes. When a thread (or process) needs access
to a critical region, it calls mutex_lock. If the mutex is currently unlocked (mean-
ing that the critical region is available), the call succeeds and the calling thread is
free to enter the critical region.

On the other hand, if the mutex is already locked, the calling thread is blocked
until the thread in the critical region is finished and calls mutex_unlock. If multi-
ple threads are blocked on the mutex, one of them is chosen at random and allowed
to acquire the lock.

Because mutexes are so simple, they can easily be implemented in user space
provided that a TSL or XCHG instruction is available. The code for mutex_lock and
mutex_unlock for use with a user-level threads package are shown in Fig. 2-29.
The solution with XCHG is essentially the same.

mutex_lock:
TSL REGISTER,MUTEX | copy mutex to register and set mutex to 1
CMP REGISTER,#0 | was mutex zero?
JZE ok | if it was zero, mutex was unlocked, so return
CALL thread_yield | mutex is busy; schedule another thread
JMP mutex_lock | try again

ok: RET | return to caller; critical region entered

mutex_unlock:
MOVE MUTEX,#0 | store a 0 in mutex
RET | return to caller

Figure 2-29. Implementation of mutex_lock and mutex_unlock.

The code of mutex_lock is similar to the code of enter_region of Fig. 2-25 but
with a crucial difference. When enter_region fails to enter the critical region, it
keeps testing the lock repeatedly (busy waiting). Eventually, the clock runs out
and some other process is scheduled to run. Sooner or later the process holding the
lock gets to run and releases it.

With (user) threads, the situation is different because there is no clock that
stops threads that have run too long. Consequently, a thread that tries to acquire a
lock by busy waiting will loop forever and never acquire the lock because it never
allows any other thread to run and release the lock.

That is where the difference between enter_region and mutex_lock comes in.
When the later fails to acquire a lock, it calls thread_yield to give up the CPU to
another thread. Consequently there is no busy waiting. When the thread runs the
next time, it tests the lock again.

Since thread _yield is just a call to the thread scheduler in user space, it is very
fast. As a consequence, neither mutex_lock nor mutex_unlock requires any kernel
calls. Using them, user-level threads can synchronize entirely in user space using
procedures that require only a handful of instructions.

134 PROCESSES AND THREADS CHAP. 2

The mutex system that we have described above is a bare-bones set of calls.
With all software, there is always a demand for more features, and synchronization
primitives are no exception. For example, sometimes a thread package offers a call
mutex_trylock that either acquires the lock or returns a code for failure, but does
not block. This call gives the thread the flexibility to decide what to do next if there
are alternatives to just waiting.

There is a subtle issue that up until now we have glossed over but which is
worth at least making explicit. With a user-space threads package there is no prob-
lem with multiple threads having access to the same mutex, since all the threads
operate in a common address space. However, with most of the earlier solutions,
such as Peterson’s algorithm and semaphores, there is an unspoken assumption that
multiple processes have access to at least some shared memory, perhaps only one
word, but something. If processes have disjoint address spaces, as we have consis-
tently said, how can they share the turn variable in Peterson’s algorithm, or sema-
phores or a common buffer?

There are two answers. First, some of the shared data structures, such as the
semaphores, can be stored in the kernel and accessed only by means of system
calls. This approach eliminates the problem. Second, most modern operating sys-
tems (including UNIX and Windows) offer a way for processes to share some por-
tion of their address space with other processes. In this way, buffers and other data
structures can be shared. In the worst case, that nothing else is possible, a shared
file can be used.

If two or more processes share most or all of their address spaces, the dis-
tinction between processes and threads becomes somewhat blurred but is neverthe-
less present. Two processes that share a common address space still have different
open files, alarm timers, and other per-process properties, whereas the threads
within a single process share them. And it is always true that multiple processes
sharing a common address space never have the efficiency of user-level threads
since the kernel is deeply involved in their management.

Futexes

With increasing parallelism, efficient synchronization and locking is very im-
portant for performance. Spin locks are fast if the wait is short, but waste CPU
cycles if not. If there is much contention, it is therefore more efficient to block the
process and let the kernel unblock it only when the lock is free. Unfortunately, this
has the inverse problem: it works well under heavy contention, but continuously
switching to the kernel is expensive if there is very little contention to begin with.
To make matters worse, it may not be easy to predict the amount of lock con-
tention.

One interesting solution that tries to combine the best of both worlds is known
as futex, or “fast user space mutex.” A futex is a feature of Linux that implements
basic locking (much like a mutex) but avoids dropping into the kernel unless it

SEC. 2.3 INTERPROCESS COMMUNICATION 135

really has to. Since switching to the kernel and back is quite expensive, doing so
improves performance considerably. A futex consists of two parts: a kernel service
and a user library. The kernel service provides a “wait queue” that allows multiple
processes to wait on a lock. They will not run, unless the kernel explicitly un-
blocks them. For a process to be put on the wait queue requires an (expensive)
system call and should be avoided. In the absence of contention, therefore, the
futex works completely in user space. Specifically, the processes share a common
lock variable—a fancy name for an aligned 32-bit integer that serves as the lock.
Suppose the lock is initially 1 —which we assume to mean that the lock is free. A
thread grabs the lock by performing an atomic “decrement and test” (atomic func-
tions in Linux consist of inline assembly wrapped in C functions and are defined in
header files). Next, the thread inspects the result to see whether or not the lock
was free. If it was not in the locked state, all is well and our thread has suc-
cessfully grabbed the lock. However, if the lock is held by another thread, our
thread has to wait. In that case, the futex library does not spin, but uses a system
call to put the thread on the wait queue in the kernel. Hopefully, the cost of the
switch to the kernel is now justified, because the thread was blocked anyway.
When a thread is done with the lock, it releases the lock with an atomic *“increment
and test” and checks the result to see if any processes are still blocked on the ker-
nel wait queue. If so, it will let the kernel know that it may unblock one or more of
these processes. If there is no contention, the kernel is not involved at all.

Mutexes in Pthreads

Pthreads provides a number of functions that can be used to synchronize
threads. The basic mechanism uses a mutex variable, which can be locked or
unlocked, to guard each critical region. A thread wishing to enter a critical region
first tries to lock the associated mutex. If the mutex is unlocked, the thread can
enter immediately and the lock is atomically set, preventing other threads from
entering. If the mutex is already locked, the calling thread is blocked until it is
unlocked. If multiple threads are waiting on the same mutex, when it is unlocked,
only one of them is allowed to continue and relock it. These locks are not manda-
tory. It is up to the programmer to make sure threads use them correctly.

The major calls relating to mutexes are shown in Fig.2-30. As expected,
mutexes can be created and destroyed. The calls for performing these operations
are pthread_mutex_init and pthread_mutex_destroy, respectively. They can also
be locked —by pthread _mutex_lock—which tries to acquire the lock and blocks if
is already locked. There is also an option for trying to lock a mutex and failing
with an error code instead of blocking if it is already blocked. This call is
pthread _mutex_trylock. This call allows a thread to effectively do busy waiting if
that is ever needed. Finally, pthread _mutex_unlock unlocks a mutex and releases
exactly one thread if one or more are waiting on it. Mutexes can also have attrib-
utes, but these are used only for specialized purposes.

136 PROCESSES AND THREADS CHAP. 2

Thread call Description
Pthread_mutex_init Create a mutex

Pthread _mutex_destroy | Destroy an existing mutex
Pthread_mutex_lock Acquire a lock or block
Pthread_mutex_trylock Acquire a lock or fail
Pthread_mutex_unlock Release a lock

Figure 2-30. Some of the Pthreads calls relating to mutexes.

In addition to mutexes, Pthreads offers a second synchronization mechanism:
condition variables. Mutexes are good for allowing or blocking access to a criti-
cal region. Condition variables allow threads to block due to some condition not
being met. Almost always the two methods are used together. Let us now look at
the interaction of threads, mutexes, and condition variables in a bit more detail.

As a simple example, consider the producer-consumer scenario again: one
thread puts things in a buffer and another one takes them out. If the producer dis-
covers that there are no more free slots available in the buffer, it has to block until
one becomes available. Mutexes make it possible to do the check atomically with-
out interference from other threads, but having discovered that the buffer is full, the
producer needs a way to block and be awakened later. This is what condition vari-
ables allow.

The most important calls related to condition variables are shown in Fig. 2-31.
As you would probably expect, there are calls to create and destroy condition vari-
ables. They can have attributes and there are various calls for managing them (not
shown). The primary operations on condition variables are pthread_cond_wait
and pthread_cond_signal. The former blocks the calling thread until some other
thread signals it (using the latter call). The reasons for blocking and waiting are
not part of the waiting and signaling protocol, of course. The blocking thread often
is waiting for the signaling thread to do some work, release some resource, or per-
form some other activity. Only then can the blocking thread continue. The condi-
tion variables allow this waiting and blocking to be done atomically. The
pthread _cond_broadcast call is used when there are multiple threads potentially
all blocked and waiting for the same signal.

Condition variables and mutexes are always used together. The pattern is for
one thread to lock a mutex, then wait on a conditional variable when it cannot get
what it needs. Eventually another thread will signal it and it can continue. The
pthread _cond_wait call atomically unlocks the mutex it is holding. For this rea-
son, the mutex is one of the parameters.

It is also worth noting that condition variables (unlike semaphores) have no
memory. If a signal is sent to a condition variable on which no thread is waiting,
the signal is lost. Programmers have to be careful not to lose signals.

SEC. 2.3 INTERPROCESS COMMUNICATION 137

Thread call Description

Pthread_cond_init Create a condition variable
Pthread_cond_destroy Destroy a condition variable
Pthread_cond_wait Block waiting for a signal
Pthread_cond_signal Signal another thread and wake it up
Pthread_cond_broadcast | Signal multiple threads and wake all of them

Figure 2-31. Some of the Pthreads calls relating to condition variables.

As an example of how mutexes and condition variables are used, Fig. 2-32
shows a very simple producer-consumer problem with a single buffer. When the
producer has filled the buffer, it must wait until the consumer empties it before pro-
ducing the next item. Similarly, when the consumer has removed an item, it must
wait until the producer has produced another one. While very simple, this example
illustrates the basic mechanisms. The statement that puts a thread to sleep should
always check the condition to make sure it is satisfied before continuing, as the
thread might have been awakened due to a UNIX signal or some other reason.

2.3.7 Monitors

With semaphores and mutexes interprocess communication looks easy, right?
Forget it. Look closely at the order of the downs before inserting or removing items
from the buffer in Fig. 2-28. Suppose that the two downs in the producer’s code
were reversed in order, so mutex was decremented before empty instead of after it.
If the buffer were completely full, the producer would block, with mutex set to 0.
Consequently, the next time the consumer tried to access the buffer, it would do a
down on mutex, now 0, and block too. Both processes would stay blocked forever
and no more work would ever be done. This unfortunate situation is called a dead-
lock. We will study deadlocks in detail in Chap. 6.

This problem is pointed out to show how careful you must be when using sem-
aphores. One subtle error and everything comes to a grinding halt. It is like pro-
gramming in assembly language, only worse, because the errors are race condi-
tions, deadlocks, and other forms of unpredictable and irreproducible behavior.

To make it easier to write correct programs, Brinch Hansen (1973) and Hoare
(1974) proposed a higher-level synchronization primitive called a monitor. Their
proposals differed slightly, as described below. A monitor is a collection of proce-
dures, variables, and data structures that are all grouped together in a special kind
of module or package. Processes may call the procedures in a monitor whenever
they want to, but they cannot directly access the monitor’s internal data structures
from procedures declared outside the monitor. Figure 2-33 illustrates a monitor
written in an imaginary language, Pidgin Pascal. C cannot be used here because
monitors are a language concept and C does not have them.

138 PROCESSES AND THREADS CHAP. 2

#include <stdio.h>
#include <pthread.h>

#define MAX 1000000000 /* how many numbers to produce */
pthread_mutex_t the_mutex;

pthread_cond_t condc, condp; /* used for signaling */

int buffer = 0; /* buffer used between producer and consumer */
void *producer(void *ptr) /* produce data */

{ inti;
for (i= 1; i <= MAX; i++) {
pthread _mutex_lock(&the_mutex); /* get exclusive access to buffer */
while (buffer != 0) pthread_cond_wait(&condp, &the_mutex);
buffer = i; /* put item in buffer */
pthread_cond_signal(&condc); /* wake up consumer */
pthread_mutex_unlock(&the _mutex); /* release access to buffer */
}
pthread_exit(0);
}

void *consumer(void *ptr) /* consume data */
{ int i;
for (i=1; i <= MAX; i++) {
pthread _mutex_lock(&the_mutex); /* get exclusive access to buffer */
while (buffer ==0) pthread_cond_wait(&condc, &the_mutex);
buffer = 0; /* take item out of buffer */
pthread_cond_signal(&condp); /* wake up producer */
pthread_mutex_unlock(&the _mutex); /* release access to buffer */
}
pthread_exit(0);
}

int main(int argc, char **argv)

{
pthread_t pro, con;
pthread_mutex_init(&the_mutex, 0);
pthread_cond_.init(&condc, 0);
pthread_cond_init(&condp, 0);
pthread_create(&con, 0, consumer, 0);
pthread _create(&pro, 0, producer, 0);
pthread_join(pro, 0);
pthread_join(con, 0);
pthread_cond_destroy(&condc);
pthread_cond_destroy(&condp);
pthread _mutex_destroy(&the_mutex);

Figure 2-32. Using threads to solve the producer-consumer problem.

SEC. 2.3 INTERPROCESS COMMUNICATION 139

Monitors have an important property that makes them useful for achieving
mutual exclusion: only one process can be active in a monitor at any instant. Moni-
tors are a programming-language construct, so the compiler knows they are special
and can handle calls to monitor procedures differently from other procedure calls.
Typically, when a process calls a monitor procedure, the first few instructions of
the procedure will check to see if any other process is currently active within the
monitor. If so, the calling process will be suspended until the other process has left
the monitor. If no other process is using the monitor, the calling process may enter.

It is up to the compiler to implement mutual exclusion on monitor entries, but
a common way is to use a mutex or a binary semaphore. Because the compiler, not
the programmer, is arranging for the mutual exclusion, it is much less likely that
something will go wrong. In any event, the person writing the monitor does not
have to be aware of how the compiler arranges for mutual exclusion. It is suf-
ficient to know that by turning all the critical regions into monitor procedures, no
two processes will ever execute their critical regions at the same time.

Although monitors provide an easy way to achieve mutual exclusion, as we
have seen above, that is not enough. We also need a way for processes to block
when they cannot proceed. In the producer-consumer problem, it is easy enough to
put all the tests for buffer-full and buffer-empty in monitor procedures, but how
should the producer block when it finds the buffer full?

The solution lies in the introduction of condition variables, along with two
operations on them, wait and signal. When a monitor procedure discovers that it
cannot continue (e.g., the producer finds the buffer full), it does a wait on some
condition variable, say, full. This action causes the calling process to block. It also
allows another process that had been previously prohibited from entering the moni-
tor to enter now. We saw condition variables and these operations in the context of
Pthreads earlier.

This other process, for example, the consumer, can wake up its sleeping part-
ner by doing a signal on the condition variable that its partner is waiting on. To
avoid having two active processes in the monitor at the same time, we need a rule
telling what happens after a signal. Hoare proposed letting the newly awakened
process run, suspending the other one. Brinch Hansen proposed finessing the prob-
lem by requiring that a process doing a signal must exit the monitor immediately.
In other words, a signal statement may appear only as the final statement in a mon-
itor procedure. We will use Brinch Hansen’s proposal because it is conceptually
simpler and is also easier to implement. If a signal is done on a condition variable
on which several processes are waiting, only one of them, determined by the sys-
tem scheduler, is revived.

As an aside, there is also a third solution, not proposed by either Hoare or
Brinch Hansen. This is to let the signaler continue to run and allow the waiting
process to start running only after the signaler has exited the monitor.

Condition variables are not counters. They do not accumulate signals for later
use the way semaphores do. Thus, if a condition variable is signaled with no one

140 PROCESSES AND THREADS CHAP. 2

monitor example
integer i;
condition c;

procedure producer();

end;

procedure consumer();

end;
end monitor;

Figure 2-33. A monitor.

waiting on it, the signal is lost forever. In other words, the wait must come before
the signal. This rule makes the implementation much simpler. In practice, it is not
a problem because it is easy to keep track of the state of each process with vari-
ables, if need be. A process that might otherwise do a signal can see that this oper-
ation is not necessary by looking at the variables.

A skeleton of the producer-consumer problem with monitors is given in
Fig. 2-34 in an imaginary language, Pidgin Pascal. The advantage of using Pidgin
Pascal here is that it is pure and simple and follows the Hoare/Brinch Hansen
model exactly.

You may be thinking that the operations wait and signal look similar to sleep
and wakeup, which we saw earlier had fatal race conditions. Well, they are very
similar, but with one crucial difference: sleep and wakeup failed because while one
process was trying to go to sleep, the other one was trying to wake it up. With
monitors, that cannot happen. The automatic mutual exclusion on monitor proce-
dures guarantees that if, say, the producer inside a monitor procedure discovers that
the buffer is full, it will be able to complete the wait operation without having to
worry about the possibility that the scheduler may switch to the consumer just be-
fore the wait completes. The consumer will not even be let into the monitor at all
until the wait is finished and the producer has been marked as no longer runnable.

Although Pidgin Pascal is an imaginary language, some real programming lan-
guages also support monitors, although not always in the form designed by Hoare
and Brinch Hansen. One such language is Java. Java is an object-oriented lan-
guage that supports user-level threads and also allows methods (procedures) to be
grouped together into classes. By adding the keyword synchronized to a method
declaration, Java guarantees that once any thread has started executing that method,
no other thread will be allowed to start executing any other synchronized method
of that object. Without synchronized, there are no guarantees about interleaving.

SEC. 2.3 INTERPROCESS COMMUNICATION 141

monitor ProducerConsumer
condition full, empty;
integer count;

procedure insert(item: integer);
begin

if count = N then wait(full);

insert_item(item);

count := count + 1;

if count = 1 then signal(empty)
end;

function remove: integer,
begin
if count = 0 then wait(empty);
remove = remove _item,
count = count — 1;
if count = N — 1 then signal(full)
end;

count :=0;
end monitor;

procedure producer;
begin
while true do
begin
item = produce_item;
ProducerConsumer.insert(item)
end
end;

procedure consumer;

begin
while true do
begin
item = ProducerConsumer.remove;
consume _item(item)
end
end;

Figure 2-34. An outline of the producer-consumer problem with monitors. Only
one monitor procedure at a time is active. The buffer has N slots.

A solution to the producer-consumer problem using monitors in Java is given
in Fig. 2-35. Our solution has four classes. The outer class, ProducerConsumer,
creates and starts two threads, p and ¢. The second and third classes, producer and
consumer, respectively, contain the code for the producer and consumer. Finally,
the class our_monitor, is the monitor. It contains two synchronized threads that
are used for actually inserting items into the shared buffer and taking them out.
Unlike the previous examples, here we have the full code of insert and remove.

142 PROCESSES AND THREADS

public class ProducerConsumer {
static final int N = 100; /I constant giving the buffer size
static producer p = new producer(); // instantiate a new producer thread
static consumer ¢ = new consumer(); // instantiate a new consumer thread
static our_monitor mon = new our_monitor(); /l instantiate a new monitor

public static void main(String args[]) {
p.start(); // start the producer thread
c.start(); // start the consumer thread

}

static class producer extends Thread {
public void run() {// run method contains the thread code
int item;
while (true) { // producer loop
item = produce_item();
mon.insert(item);
}
}

private int produce_item() { ...} // actually produce

}

static class consumer extends Thread {
public void run() {run method contains the thread code
int item;
while (true) { // consumer loop
item = mon.remove();
consume_item (item);
}
}

private void consume_item(int item) { ... }// actually consume
}

static class our_monitor { // this is @ monitor
private int buffer[] = new int[N];
private int count =0, lo = 0, hi =0; // counters and indices

public synchronized void insert(int val) {
if (count == N) go_to_sleep(); //if the buffer is full, go to sleep
buffer [hi] = val; // insert an item into the buffer
hi=(hi+1) % N; // slot to place next item in
count =count + 1; // one more item in the buffer now
if (count == 1) notify(); /I if consumer was sleeping, wake it up

}

public synchronized int remove() {
int val;
if (count == 0) go_to_sleep(); // if the buffer is empty, go to sleep
val = buffer [lo]; // fetch an item from the buffer
lo=(lo+1)%N; // slot to fetch next item from
count =count—1; // one few items in the buffer
if (count == N — 1) notify(); // if producer was sleeping, wake it up
return val;
}
private void go_to_sleep() { try{wait();} catch(InterruptedException exc) {};}

}

Figure 2-35. A solution to the producer-consumer problem in Java.

CHAP. 2

SEC. 2.3 INTERPROCESS COMMUNICATION 143

The producer and consumer threads are functionally identical to their count-
erparts in all our previous examples. The producer has an infinite loop generating
data and putting it into the common buffer. The consumer has an equally infinite
loop taking data out of the common buffer and doing some fun thing with it.

The interesting part of this program is the class our_monitor, which holds the
buffer, the administration variables, and two synchronized methods. When the pro-
ducer is active inside insert, it knows for sure that the consumer cannot be active
inside remove, making it safe to update the variables and the buffer without fear of
race conditions. The variable count keeps track of how many items are in the buff-
er. It can take on any value from O through and including N — 1. The variable /o is
the index of the buffer slot where the next item is to be fetched. Similarly, 4i is the
index of the buffer slot where the next item is to be placed. It is permitted that
lo = hi, which means that either O items or /N items are in the buffer. The value of
count tells which case holds.

Synchronized methods in Java differ from classical monitors in an essential
way: Java does not have condition variables built in. Instead, it offers two proce-
dures, wait and notify, which are the equivalent of sleep and wakeup except that
when they are used inside synchronized methods, they are not subject to race con-
ditions. In theory, the method waif can be interrupted, which is what the code sur-
rounding it is all about. Java requires that the exception handling be made explicit.
For our purposes, just imagine that go_to_sleep is the way to go to sleep.

By making the mutual exclusion of critical regions automatic, monitors make
parallel programming much less error prone than using semaphores. Nevertheless,
they too have some drawbacks. It is not for nothing that our two examples of mon-
itors were in Pidgin Pascal instead of C, as are the other examples in this book. As
we said earlier, monitors are a programming-language concept. The compiler must
recognize them and arrange for the mutual exclusion somehow or other. C, Pascal,
and most other languages do not have monitors, so it is unreasonable to expect
their compilers to enforce any mutual exclusion rules. In fact, how could the com-
piler even know which procedures were in monitors and which were not?

These same languages do not have semaphores either, but adding semaphores
is easy: all you need to do is add two short assembly-code routines to the library to
issue the up and down system calls. The compilers do not even have to know that
they exist. Of course, the operating systems have to know about the semaphores,
but at least if you have a semaphore-based operating system, you can still write the
user programs for it in C or C++ (or even assembly language if you are masochis-
tic enough). With monitors, you need a language that has them built in.

Another problem with monitors, and also with semaphores, is that they were
designed for solving the mutual exclusion problem on one or more CPUs that all
have access to a common memory. By putting the semaphores in the shared mem-
ory and protecting them with TSL or XCHG instructions, we can avoid races. When
we move to a distributed system consisting of multiple CPUs, each with its own
private memory and connected by a local area network, these primitives become

144 PROCESSES AND THREADS CHAP. 2

inapplicable. The conclusion is that semaphores are too low level and monitors are
not usable except in a few programming languages. Also, none of the primitives
allow information exchange between machines. Something else is needed.

2.3.8 Message Passing

That something else is message passing. This method of interprocess commu-
nication uses two primitives, send and receive, which, like semaphores and unlike
monitors, are system calls rather than language constructs. As such, they can easi-
ly be put into library procedures, such as

send(destination, &message);
and
receive(source, &message);

The former call sends a message to a given destination and the latter one receives a
message from a given source (or from ANY, if the receiver does not care). If no
message is available, the receiver can block until one arrives. Alternatively, it can
return immediately with an error code.

Design Issues for Message-Passing Systems

Message-passing systems have many problems and design issues that do not
arise with semaphores or with monitors, especially if the communicating processes
are on different machines connected by a network. For example, messages can be
lost by the network. To guard against lost messages, the sender and receiver can
agree that as soon as a message has been received, the receiver will send back a
special acknowledgement message. If the sender has not received the acknowl-
edgement within a certain time interval, it retransmits the message.

Now consider what happens if the message is received correctly, but the ac-
knowledgement back to the sender is lost. The sender will retransmit the message,
so the receiver will get it twice. It is essential that the receiver be able to distin-
guish a new message from the retransmission of an old one. Usually, this problem
is solved by putting consecutive sequence numbers in each original message. If
the receiver gets a message bearing the same sequence number as the previous
message, it knows that the message is a duplicate that can be ignored. Successfully
communicating in the face of unreliable message passing is a major part of the
study of computer networks. For more information, see Tanenbaum and Wetherall
(2010).

Message systems also have to deal with the question of how processes are
named, so that the process specified in a send or receive call is unambiguous.
Authentication is also an issue in message systems: how can the client tell that it
is communicating with the real file server, and not with an imposter?

SEC. 2.3 INTERPROCESS COMMUNICATION 145

At the other end of the spectrum, there are also design issues that are important
when the sender and receiver are on the same machine. One of these is perfor-
mance. Copying messages from one process to another is always slower than
doing a semaphore operation or entering a monitor. Much work has gone into mak-
ing message passing efficient.

The Producer-Consumer Problem with Message Passing

Now let us see how the producer-consumer problem can be solved with mes-
sage passing and no shared memory. A solution is given in Fig. 2-36. We assume
that all messages are the same size and that messages sent but not yet received are
buffered automatically by the operating system. In this solution, a total of N mes-
sages is used, analogous to the N slots in a shared-memory buffer. The consumer
starts out by sending N empty messages to the producer. Whenever the producer
has an item to give to the consumer, it takes an empty message and sends back a
full one. In this way, the total number of messages in the system remains constant
in time, so they can be stored in a given amount of memory known in advance.

If the producer works faster than the consumer, all the messages will end up
full, waiting for the consumer; the producer will be blocked, waiting for an empty
to come back. If the consumer works faster, then the reverse happens: all the mes-
sages will be empties waiting for the producer to fill them up; the consumer will be
blocked, waiting for a full message.

Many variants are possible with message passing. For starters, let us look at
how messages are addressed. One way is to assign each process a unique address
and have messages be addressed to processes. A different way is to invent a new
data structure, called a mailbox. A mailbox is a place to buffer a certain number
of messages, typically specified when the mailbox is created. When mailboxes are
used, the address parameters in the send and receive calls are mailboxes, not proc-
esses. When a process tries to send to a mailbox that is full, it is suspended until a
message is removed from that mailbox, making room for a new one.

For the producer-consumer problem, both the producer and consumer would
create mailboxes large enough to hold N messages. The producer would send mes-
sages containing actual data to the consumer’s mailbox, and the consumer would
send empty messages to the producer’s mailbox. When mailboxes are used, the
buffering mechanism is clear: the destination mailbox holds messages that have
been sent to the destination process but have not yet been accepted.

The other extreme from having mailboxes is to eliminate all buffering. When
this approach is taken, if the send is done before the receive, the sending process is
blocked until the receive happens, at which time the message can be copied direct-
ly from the sender to the receiver, with no buffering. Similarly, if the receive is
done first, the receiver is blocked until a send happens. This strategy is often
known as a rendezvous. It is easier to implement than a buffered message scheme
but is less flexible since the sender and receiver are forced to run in lockstep.

146 PROCESSES AND THREADS CHAP. 2

#define N 100 /* number of slots in the buffer */

void producer(void)

{
int item;
message m; /* message buffer */

while (TRUE) {

item = produce_item(); /* generate something to put in buffer */
receive(consumer, &m); /* wait for an empty to arrive */
build_message(&m, item); /* construct a message to send */
send(consumer, &m); /* send item to consumer */

void consumer(void)
{
int item, i;
message m;

for (i = 0; i < N; i++) send(producer, &m); /* send N empties */
while (TRUE) {

receive(producer, &m); /* get message containing item */
item = extract_item(&m); /* extract item from message */
send(producer, &m); /* send back empty reply */
consume_item(item); /* do something with the item */

Figure 2-36. The producer-consumer problem with N messages.

Message passing is commonly used in parallel programming systems. One
well-known message-passing system, for example, is MPI (Message-Passing
Interface). It is widely used for scientific computing. For more information about
it, see for example Gropp et al. (1994), and Snir et al. (1996).

2.3.9 Barriers

Our last synchronization mechanism is intended for groups of processes rather
than two-process producer-consumer type situations. Some applications are divi-
ded into phases and have the rule that no process may proceed into the next phase
until all processes are ready to proceed to the next phase. This behavior may be
achieved by placing a barrier at the end of each phase. When a process reaches
the barrier, it is blocked until all processes have reached the barrier. This allows
groups of processes to synchronize. Barrier operation is illustrated in Fig. 2-37.

SEC. 2.3 INTERPROCESS COMMUNICATION 147

............................... @ @
Process ? ? E)
©r 3 ©-| 8 £l©
................ @ @
Time —— Time —— Time ——
(a) (b) (c)

Figure 2-37. Use of a barrier. (a) Processes approaching a barrier. (b) All proc-
esses but one blocked at the barrier. (c) When the last process arrives at the barri-
er, all of them are let through.

In Fig. 2-37(a) we see four processes approaching a barrier. What this means is
that they are just computing and have not reached the end of the current phase yet.
After a while, the first process finishes all the computing required of it during the
first phase. It then executes the barrier primitive, generally by calling a library pro-
cedure. The process is then suspended. A little later, a second and then a third
process finish the first phase and also execute the barrier primitive. This situation is
illustrated in Fig. 2-37(b). Finally, when the last process, C, hits the barrier, all the
processes are released, as shown in Fig. 2-37(c).

As an example of a problem requiring barriers, consider a common relaxation
problem in physics or engineering. There is typically a matrix that contains some
initial values. The values might represent temperatures at various points on a sheet
of metal. The idea might be to calculate how long it takes for the effect of a flame
placed at one corner to propagate throughout the sheet.

Starting with the current values, a transformation is applied to the matrix to get
the second version of the matrix, for example, by applying the laws of thermody-
namics to see what all the temperatures are AT later. Then the process is repeated
over and over, giving the temperatures at the sample points as a function of time as
the sheet heats up. The algorithm produces a sequence of matrices over time, each
one for a given point in time.

Now imagine that the matrix is very large (for example, 1 million by 1 mil-
lion), so that parallel processes are needed (possibly on a multiprocessor) to speed
up the calculation. Different processes work on different parts of the matrix, calcu-
lating the new matrix elements from the old ones according to the laws of physics.
However, no process may start on iteration n + 1 until iteration n is complete, that
is, until all processes have finished their current work. The way to achieve this goal

148 PROCESSES AND THREADS CHAP. 2

is to program each process to execute a barrier operation after it has finished its
part of the current iteration. When all of them are done, the new matrix (the input
to the next iteration) will be finished, and all processes will be simultaneously re-
leased to start the next iteration.

2.3.10 Avoiding Locks: Read-Copy-Update

The fastest locks are no locks at all. The question is whether we can allow for
concurrent read and write accesses to shared data structures without locking. In the
general case, the answer is clearly no. Imagine process A sorting an array of num-
bers, while process B is calculating the average. Because A moves the values back
and forth across the array, B may encounter some values multiple times and others
not at all. The result could be anything, but it would almost certainly be wrong.

In some cases, however, we can allow a writer to update a data structure even
though other processes are still using it. The trick is to ensure that each reader ei-
ther reads the old version of the data, or the new one, but not some weird combina-
tion of old and new. As an illustration, consider the tree shown in Fig. 2-38.
Readers traverse the tree from the root to its leaves. In the top half of the figure, a
new node X is added. To do so, we make the node “just right” before making it
visible in the tree: we initialize all values in node X, including its child pointers.
Then, with one atomic write, we make X a child of A. No reader will ever read an
inconsistent version. In the bottom half of the figure, we subsequently remove B
and D. First, we make A’s left child pointer point to C. All readers that were in A
will continue with node C and never see B or D. In other words, they will see only
the new version. Likewise, all readers currently in B or D will continue following
the original data structure pointers and see the old version. All is well, and we
never need to lock anything. The main reason that the removal of B and D works
without locking the data structure, is that RCU (Read-Copy-Update), decouples
the removal and reclamation phases of the update.

Of course, there is a problem. As long as we are not sure that there are no more
readers of B or D, we cannot really free them. But how long should we wait? One
minute? Ten? We have to wait until the last reader has left these nodes. RCU care-
fully determines the maximum time a reader may hold a reference to the data struc-
ture. After that period, it can safely reclaim the memory. Specifically, readers ac-
cess the data structure in what is known as a read-side critical section which may
contain any code, as long as it does not block or sleep. In that case, we know the
maximum time we need to wait. Specifically, we define a grace period as any time
period in which we know that each thread to be outside the read-side critical sec-
tion at least once. All will be well if we wait for a duration that is at least equal to
the grace period before reclaiming. As the code in a read-side critical section is not
allowed to block or sleep, a simple criterion is to wait until all the threads have ex-
ecuted a context switch.

SEC. 24 SCHEDULING 149

Adding a node:

A A A
B B
N VN ¢
C D E C D E C D
(a) Original tree. (b) Initialize node X and (c) When X is completely initialized,

connect E to X. Any readers connect X to A. Readers currently

in A and E are not affected. in E will have read the old version,
while readers in A will pick up the
new version of the tree.

Removing nodes:

A A A
X reo X X
B i B
NN ¢ RSN ¢ ¢
C D E C D E C E
(d) Decouple B from A. Note (e) Wait until we are sure (f) Now we can safely
that there may still be readers that all readers have left B remove B and D
in B. All readers in B will see and C. These nodes cannot
the old version of the tree, be accessed any more.

while all readers currently
in A will see the new version.

Figure 2-38. Read-Copy-Update: inserting a node in the tree and then removing
a branch—all without locks.

24 SCHEDULING

When a computer is multiprogrammed, it frequently has multiple processes or
threads competing for the CPU at the same time. This situation occurs whenever
two or more of them are simultaneously in the ready state. If only one CPU is
available, a choice has to be made which process to run next. The part of the oper-
ating system that makes the choice is called the scheduler, and the algorithm it
uses is called the scheduling algorithm. These topics form the subject matter of
the following sections.

Many of the same issues that apply to process scheduling also apply to thread
scheduling, although some are different. When the kernel manages threads, sched-
uling is usually done per thread, with little or no regard to which process the thread
belongs. Initially we will focus on scheduling issues that apply to both processes
and threads. Later on we will explicitly look at thread scheduling and some of the
unique issues it raises. We will deal with multicore chips in Chap. 8.

150 PROCESSES AND THREADS CHAP. 2

2.4.1 Introduction to Scheduling

Back in the old days of batch systems with input in the form of card images on
a magnetic tape, the scheduling algorithm was simple: just run the next job on the
tape. With multiprogramming systems, the scheduling algorithm became more
complex because there were generally multiple users waiting for service. Some
mainframes still combine batch and timesharing service, requiring the scheduler to
decide whether a batch job or an interactive user at a terminal should go next. (As
an aside, a batch job may be a request to run multiple programs in succession, but
for this section, we will just assume it is a request to run a single program.) Be-
cause CPU time is a scarce resource on these machines, a good scheduler can make
a big difference in perceived performance and user satisfaction. Consequently, a
great deal of work has gone into devising clever and efficient scheduling algo-
rithms.

With the advent of personal computers, the situation changed in two ways.
First, most of the time there is only one active process. A user entering a docu-
ment on a word processor is unlikely to be simultaneously compiling a program in
the background. When the user types a command to the word processor, the sched-
uler does not have to do much work to figure out which process to run—the word
processor is the only candidate.

Second, computers have gotten so much faster over the years that the CPU is
rarely a scarce resource any more. Most programs for personal computers are lim-
ited by the rate at which the user can present input (by typing or clicking), not by
the rate the CPU can process it. Even compilations, a major sink of CPU cycles in
the past, take just a few seconds in most cases nowadays. Even when two programs
are actually running at once, such as a word processor and a spreadsheet, it hardly
matters which goes first since the user is probably waiting for both of them to fin-
ish. As a consequence, scheduling does not matter much on simple PCs. Of
course, there are applications that practically eat the CPU alive. For instance ren-
dering one hour of high-resolution video while tweaking the colors in each of the
107,892 frames (in NTSC) or 90,000 frames (in PAL) requires industrial-strength
computing power. However, similar applications are the exception rather than the
rule.

When we turn to networked servers, the situation changes appreciably. Here
multiple processes often do compete for the CPU, so scheduling matters again. For
example, when the CPU has to choose between running a process that gathers the
daily statistics and one that serves user requests, the users will be a lot happier if
the latter gets first crack at the CPU.

The “abundance of resources” argument also does not hold on many mobile
devices, such as smartphones (except perhaps the most powerful models) and
nodes in sensor networks. Here, the CPU may still be weak and the memory small.
Moreover, since battery lifetime is one of the most important constraints on these
devices, some schedulers try to optimize the power consumption.

SEC. 24 SCHEDULING 151

In addition to picking the right process to run, the scheduler also has to worry
about making efficient use of the CPU because process switching is expensive. To
start with, a switch from user mode to kernel mode must occur. Then the state of
the current process must be saved, including storing its registers in the process ta-
ble so they can be reloaded later. In some systems, the memory map (e.g., memory
reference bits in the page table) must be saved as well. Next a new process must be
selected by running the scheduling algorithm. After that, the memory management
unit (MMU) must be reloaded with the memory map of the new process. Finally,
the new process must be started. In addition to all that, the process switch may
invalidate the memory cache and related tables, forcing it to be dynamically
reloaded from the main memory twice (upon entering the kernel and upon leaving
it). All in all, doing too many process switches per second can chew up a substan-
tial amount of CPU time, so caution is advised.

Process Behavior

Nearly all processes alternate bursts of computing with (disk or network) I/O
requests, as shown in Fig. 2-39. Often, the CPU runs for a while without stopping,
then a system call is made to read from a file or write to a file. When the system
call completes, the CPU computes again until it needs more data or has to write
more data, and so on. Note that some /O activities count as computing. For ex-
ample, when the CPU copies bits to a video RAM to update the screen, it is com-
puting, not doing I/O, because the CPU is in use. 1/O in this sense is when a proc-
ess enters the blocked state waiting for an external device to complete its work.

(@ I F——- — F—— |

/

Long CPU burst

Waiting for 1/0
Short CPU burst

/

() [{1 I { (—1 1 I 1 —
Time
B ——

Figure 2-39. Bursts of CPU usage alternate with periods of waiting for I/O.
(a) A CPU-bound process. (b) An I/O-bound process.

The important thing to notice about Fig. 2-39 is that some processes, such as
the one in Fig. 2-39(a), spend most of their time computing, while other processes,
such as the one shown in Fig. 2-39(b), spend most of their time waiting for I/O.

152 PROCESSES AND THREADS CHAP. 2

The former are called compute-bound or CPU-bound; the latter are called I/O-
bound. Compute-bound processes typically have long CPU bursts and thus infre-
quent I/O waits, whereas I/O-bound processes have short CPU bursts and thus fre-
quent I/O waits. Note that the key factor is the length of the CPU burst, not the
length of the 1/O burst. 1/O-bound processes are I/O bound because they do not
compute much between /O requests, not because they have especially long 1/O re-
quests. It takes the same time to issue the hardware request to read a disk block no
matter how much or how little time it takes to process the data after they arrive.

It is worth noting that as CPUs get faster, processes tend to get more 1/O-
bound. This effect occurs because CPUs are improving much faster than disks. As
a consequence, the scheduling of I/O-bound processes is likely to become a more
important subject in the future. The basic idea here is that if an I/O-bound process
wants to run, it should get a chance quickly so that it can issue its disk request and
keep the disk busy. As we saw in Fig. 2-6, when processes are I/O bound, it takes
quite a few of them to keep the CPU fully occupied.

When to Schedule

A key issue related to scheduling is when to make scheduling decisions. It
turns out that there are a variety of situations in which scheduling is needed. First,
when a new process is created, a decision needs to be made whether to run the par-
ent process or the child process. Since both processes are in ready state, it is a nor-
mal scheduling decision and can go either way, that is, the scheduler can legiti-
mately choose to run either the parent or the child next.

Second, a scheduling decision must be made when a process exits. That proc-
ess can no longer run (since it no longer exists), so some other process must be
chosen from the set of ready processes. If no process is ready, a system-supplied
idle process is normally run.

Third, when a process blocks on /O, on a semaphore, or for some other rea-
son, another process has to be selected to run. Sometimes the reason for blocking
may play a role in the choice. For example, if A is an important process and it is
waiting for B to exit its critical region, letting B run next will allow it to exit its
critical region and thus let A continue. The trouble, however, is that the scheduler
generally does not have the necessary information to take this dependency into ac-
count.

Fourth, when an I/O interrupt occurs, a scheduling decision may be made. If
the interrupt came from an I/O device that has now completed its work, some proc-
ess that was blocked waiting for the I/O may now be ready to run. It is up to the
scheduler to decide whether to run the newly ready process, the process that was
running at the time of the interrupt, or some third process.

If a hardware clock provides periodic interrupts at 50 or 60 Hz or some other
frequency, a scheduling decision can be made at each clock interrupt or at every
kth clock interrupt. Scheduling algorithms can be divided into two categories with

SEC. 24 SCHEDULING 153

respect to how they deal with clock interrupts. A nonpreemptive scheduling algo-
rithm picks a process to run and then just lets it run until it blocks (either on I/O or
waiting for another process) or voluntarily releases the CPU. Even if it runs for
many hours, it will not be forcibly suspended. In effect, no scheduling decisions
are made during clock interrupts. After clock-interrupt processing has been fin-
ished, the process that was running before the interrupt is resumed, unless a
higher-priority process was waiting for a now-satisfied timeout.

In contrast, a preemptive scheduling algorithm picks a process and lets it run
for a maximum of some fixed time. If it is still running at the end of the time inter-
val, it is suspended and the scheduler picks another process to run (if one is avail-
able). Doing preemptive scheduling requires having a clock interrupt occur at the
end of the time interval to give control of the CPU back to the scheduler. If no
clock is available, nonpreemptive scheduling is the only option.

Categories of Scheduling Algorithms

Not surprisingly, in different environments different scheduling algorithms are
needed. This situation arises because different application areas (and different
kinds of operating systems) have different goals. In other words, what the schedul-
er should optimize for is not the same in all systems. Three environments worth
distinguishing are

1. Batch.
2. Interactive.
3. Real time.

Batch systems are still in widespread use in the business world for doing payroll,
inventory, accounts receivable, accounts payable, interest calculation (at banks),
claims processing (at insurance companies), and other periodic tasks. In batch sys-
tems, there are no users impatiently waiting at their terminals for a quick response
to a short request. Consequently, nonpreemptive algorithms, or preemptive algo-
rithms with long time periods for each process, are often acceptable. This approach
reduces process switches and thus improves performance. The batch algorithms
are actually fairly general and often applicable to other situations as well, which
makes them worth studying, even for people not involved in corporate mainframe
computing.

In an environment with interactive users, preemption is essential to keep one
process from hogging the CPU and denying service to the others. Even if no proc-
ess intentionally ran forever, one process might shut out all the others indefinitely
due to a program bug. Preemption is needed to prevent this behavior. Servers also
fall into this category, since they normally serve multiple (remote) users, all of
whom are in a big hurry. Computer users are always in a big hurry.

154 PROCESSES AND THREADS CHAP. 2

In systems with real-time constraints, preemption is, oddly enough, sometimes
not needed because the processes know that they may not run for long periods of
time and usually do their work and block quickly. The difference with interactive
systems is that real-time systems run only programs that are intended to further the
application at hand. Interactive systems are general purpose and may run arbitrary
programs that are not cooperative and even possibly malicious.

Scheduling Algorithm Goals

In order to design a scheduling algorithm, it is necessary to have some idea of
what a good algorithm should do. Some goals depend on the environment (batch,
interactive, or real time), but some are desirable in all cases. Some goals are listed
in Fig. 2-40. We will discuss these in turn below.

All systems
Fairness - giving each process a fair share of the CPU
Policy enforcement - seeing that stated policy is carried out
Balance - keeping all parts of the system busy

Batch systems
Throughput - maximize jobs per hour
Turnaround time - minimize time between submission and termination
CPU utilization - keep the CPU busy all the time

Interactive systems
Response time - respond to requests quickly
Proportionality - meet users’ expectations

Real-time systems
Meeting deadlines - avoid losing data
Predictability - avoid quality degradation in multimedia systems

Figure 2-40. Some goals of the scheduling algorithm under different circumstances.

Under all circumstances, fairness is important. Comparable processes should
get comparable service. Giving one process much more CPU time than an equiv-
alent one is not fair. Of course, different categories of processes may be treated
differently. Think of safety control and doing the payroll at a nuclear reactor’s
computer center.

Somewhat related to fairness is enforcing the system’s policies. If the local
policy is that safety control processes get to run whenever they want to, even if it
means the payroll is 30 sec late, the scheduler has to make sure this policy is
enforced.

Another general goal is keeping all parts of the system busy when possible. If
the CPU and all the I/O devices can be kept running all the time, more work gets

SEC. 24 SCHEDULING 155

done per second than if some of the components are idle. In a batch system, for
example, the scheduler has control of which jobs are brought into memory to run.
Having some CPU-bound processes and some I/O-bound processes in memory to-
gether is a better idea than first loading and running all the CPU-bound jobs and
then, when they are finished, loading and running all the I/O-bound jobs. If the lat-
ter strategy is used, when the CPU-bound processes are running, they will fight for
the CPU and the disk will be idle. Later, when the 1/O-bound jobs come in, they
will fight for the disk and the CPU will be idle. Better to keep the whole system
running at once by a careful mix of processes.

The managers of large computer centers that run many batch jobs typically
look at three metrics to see how well their systems are performing: throughput,
turnaround time, and CPU utilization. Throughput is the number of jobs per hour
that the system completes. All things considered, finishing 50 jobs per hour is bet-
ter than finishing 40 jobs per hour. Turnaround time is the statistically average
time from the moment that a batch job is submitted until the moment it is com-
pleted. It measures how long the average user has to wait for the output. Here the
rule is: Small is Beautiful.

A scheduling algorithm that tries to maximize throughput may not necessarily
minimize turnaround time. For example, given a mix of short jobs and long jobs, a
scheduler that always ran short jobs and never ran long jobs might achieve an ex-
cellent throughput (many short jobs per hour) but at the expense of a terrible
turnaround time for the long jobs. If short jobs kept arriving at a fairly steady rate,
the long jobs might never run, making the mean turnaround time infinite while
achieving a high throughput.

CPU utilization is often used as a metric on batch systems. Actually though, it
is not a good metric. What really matters is how many jobs per hour come out of
the system (throughput) and how long it takes to get a job back (turnaround time).
Using CPU utilization as a metric is like rating cars based on how many times per
hour the engine turns over. However, knowing when the CPU utilization is almost
100% is useful for knowing when it is time to get more computing power.

For interactive systems, different goals apply. The most important one is to
minimize response time, that is, the time between issuing a command and getting
the result. On a personal computer where a background process is running (for ex-
ample, reading and storing email from the network), a user request to start a pro-
gram or open a file should take precedence over the background work. Having all
interactive requests go first will be perceived as good service.

A somewhat related issue is what might be called proportionality. Users have
an inherent (but often incorrect) idea of how long things should take. When a re-
quest that the user perceives as complex takes a long time, users accept that, but
when a request that is perceived as simple takes a long time, users get irritated. For
example, if clicking on an icon that starts uploading a 500-MB video to a cloud
server takes 60 sec, the user will probably accept that as a fact of life because he
does not expect the upload to take 5 sec. He knows it will take time.

156 PROCESSES AND THREADS CHAP. 2

On the other hand, when a user clicks on the icon that breaks the connection to
the cloud server after the video has been uploaded, he has different expectations. If
it has not completed after 30 sec, the user will probably be swearing a blue streak,
and after 60 sec he will be foaming at the mouth. This behavior is due to the com-
mon user perception that sending a lot of data is supposed to take a lot longer than
just breaking the connection. In some cases (such as this one), the scheduler can-
not do anything about the response time, but in other cases it can, especially when
the delay is due to a poor choice of process order.

Real-time systems have different properties than interactive systems, and thus
different scheduling goals. They are characterized by having deadlines that must or
at least should be met. For example, if a computer is controlling a device that pro-
duces data at a regular rate, failure to run the data-collection process on time may
result in lost data. Thus the foremost need in a real-time system is meeting all (or
most) deadlines.

In some real-time systems, especially those involving multimedia, predictabil-
ity is important. Missing an occasional deadline is not fatal, but if the audio proc-
ess runs too erratically, the sound quality will deteriorate rapidly. Video is also an
issue, but the ear is much more sensitive to jitter than the eye. To avoid this prob-
lem, process scheduling must be highly predictable and regular. We will study
batch and interactive scheduling algorithms in this chapter. Real-time scheduling
is not covered in the book but in the extra material on multimedia operating sys-
tems on the book’s Website.

2.4.2 Scheduling in Batch Systems

It is now time to turn from general scheduling issues to specific scheduling al-
gorithms. In this section we will look at algorithms used in batch systems. In the
following ones we will examine interactive and real-time systems. It is worth
pointing out that some algorithms are used in both batch and interactive systems.
We will study these later.

First-Come, First-Served

Probably the simplest of all scheduling algorithms ever devised is nonpreemp-
tive first-come, first-served. With this algorithm, processes are assigned the CPU
in the order they request it. Basically, there is a single queue of ready processes.
When the first job enters the system from the outside in the morning, it is started
immediately and allowed to run as long as it wants to. It is not interrupted because
it has run too long. As other jobs come in, they are put onto the end of the queue.
When the running process blocks, the first process on the queue is run next. When
a blocked process becomes ready, like a newly arrived job, it is put on the end of
the queue, behind all waiting processes.

SEC. 24 SCHEDULING 157

The great strength of this algorithm is that it is easy to understand and equally
easy to program. It is also fair in the same sense that allocating scarce concert
tickets or brand-new iPhones to people who are willing to stand on line starting at
2 AM. is fair. With this algorithm, a single linked list keeps track of all ready proc-
esses. Picking a process to run just requires removing one from the front of the
queue. Adding a new job or unblocked process just requires attaching it to the end
of the queue. What could be simpler to understand and implement?

Unfortunately, first-come, first-served also has a powerful disadvantage. Sup-
pose there is one compute-bound process that runs for 1 sec at a time and many
I/0-bound processes that use little CPU time but each have to perform 1000 disk
reads to complete. The compute-bound process runs for 1 sec, then it reads a disk
block. All the I/O processes now run and start disk reads. When the com-
pute-bound process gets its disk block, it runs for another 1 sec, followed by all the
I/0O-bound processes in quick succession.

The net result is that each 1/O-bound process gets to read 1 block per second
and will take 1000 sec to finish. With a scheduling algorithm that preempted the
compute-bound process every 10 msec, the I[/O-bound processes would finish in 10
sec instead of 1000 sec, and without slowing down the compute-bound process
very much.

Shortest Job First

Now let us look at another nonpreemptive batch algorithm that assumes the run
times are known in advance. In an insurance company, for example, people can
predict quite accurately how long it will take to run a batch of 1000 claims, since
similar work is done every day. When several equally important jobs are sitting in
the input queue waiting to be started, the scheduler picks the shortest job first.
Look at Fig. 2-41. Here we find four jobs A, B, C, and D with run times of 8, 4, 4,
and 4 minutes, respectively. By running them in that order, the turnaround time for
A is 8 minutes, for B is 12 minutes, for C is 16 minutes, and for D is 20 minutes for
an average of 14 minutes.

8 4 4 4 4 4 4 8
A B | c | D B | c | D A
(a) (b)

Figure 2-41. An example of shortest-job-first scheduling. (a) Running four jobs
in the original order. (b) Running them in shortest job first order.

Now let us consider running these four jobs using shortest job first, as shown
in Fig. 2-41(b). The turnaround times are now 4, 8, 12, and 20 minutes for an aver-
age of 11 minutes. Shortest job first is provably optimal. Consider the case of four

158 PROCESSES AND THREADS CHAP. 2

jobs, with execution times of a, b, ¢, and d, respectively. The first job finishes at
time a, the second at time a + b, and so on. The mean turnaround time is
(4a +3b+2c+ d)/4. 1t is clear that a contributes more to the average than the
other times, so it should be the shortest job, with b next, then c, and finally d as the
longest since it affects only its own turnaround time. The same argument applies
equally well to any number of jobs.

It is worth pointing out that shortest job first is optimal only when all the jobs
are available simultaneously. As a counterexample, consider five jobs, A through
E, with run times of 2,4, 1, 1, and 1, respectively. Their arrival times are 0, 0, 3, 3,
and 3. Initially, only A or B can be chosen, since the other three jobs have not arri-
ved yet. Using shortest job first, we will run the jobs in the order A, B, C, D, E, for
an average wait of 4.6. However, running them in the order B, C, D, E, A has an
average wait of 4.4.

Shortest Remaining Time Next

A preemptive version of shortest job first is shortest remaining time next.
With this algorithm, the scheduler always chooses the process whose remaining
run time is the shortest. Again here, the run time has to be known in advance.
When a new job arrives, its total time is compared to the current process’ remain-
ing time. If the new job needs less time to finish than the current process, the cur-
rent process is suspended and the new job started. This scheme allows new short
jobs to get good service.

2.4.3 Scheduling in Interactive Systems

We will now look at some algorithms that can be used in interactive systems.
These are common on personal computers, servers, and other kinds of systems as
well.

Round-Robin Scheduling

One of the oldest, simplest, fairest, and most widely used algorithms is round
robin. Each process is assigned a time interval, called its quantum, during which
it is allowed to run. If the process is still running at the end of the quantum, the
CPU is preempted and given to another process. If the process has blocked or fin-
ished before the quantum has elapsed, the CPU switching is done when the process
blocks, of course. Round robin is easy to implement. All the scheduler needs to do
is maintain a list of runnable processes, as shown in Fig. 2-42(a). When the proc-
ess uses up its quantum, it is put on the end of the list, as shown in Fig. 2-42(b).

The only really interesting issue with round robin is the length of the quantum.
Switching from one process to another requires a certain amount of time for doing
all the administration—saving and loading registers and memory maps, updating

SEC. 24 SCHEDULING 159

Current Next Current
process process process
8 El Bl B
(a) (b)

Figure 2-42. Round-robin scheduling. (a) The list of runnable processes.
(b) The list of runnable processes after B uses up its quantum.

various tables and lists, flushing and reloading the memory cache, and so on. Sup-
pose that this process switch or context switch, as it is sometimes called, takes 1
msec, including switching memory maps, flushing and reloading the cache, etc.
Also suppose that the quantum is set at 4 msec. With these parameters, after doing
4 msec of useful work, the CPU will have to spend (i.e., waste) 1 msec on process
switching. Thus 20% of the CPU time will be thrown away on administrative over-
head. Clearly, this is too much.

To improve the CPU efficiency, we could set the quantum to, say, 100 msec.
Now the wasted time is only 1%. But consider what happens on a server system if
50 requests come in within a very short time interval and with widely varying CPU
requirements. Fifty processes will be put on the list of runnable processes. If the
CPU is idle, the first one will start immediately, the second one may not start until
100 msec later, and so on. The unlucky last one may have to wait 5 sec before get-
ting a chance, assuming all the others use their full quanta. Most users will per-
ceive a 5-sec response to a short command as sluggish. This situation is especially
bad if some of the requests near the end of the queue required only a few millisec-
onds of CPU time. With a short quantum they would have gotten better service.

Another factor is that if the quantum is set longer than the mean CPU burst,
preemption will not happen very often. Instead, most processes will perform a
blocking operation before the quantum runs out, causing a process switch. Elimi-
nating preemption improves performance because process switches then happen
only when they are logically necessary, that is, when a process blocks and cannot
continue.

The conclusion can be formulated as follows: setting the quantum too short
causes too many process switches and lowers the CPU efficiency, but setting it too
long may cause poor response to short interactive requests. A quantum around
20-50 msec is often a reasonable compromise.

Priority Scheduling
Round-robin scheduling makes the implicit assumption that all processes are

equally important. Frequently, the people who own and operate multiuser com-
puters have quite different ideas on that subject. At a university, for example, the

160 PROCESSES AND THREADS CHAP. 2

pecking order may be the president first, the faculty deans next, then professors,
secretaries, janitors, and finally students. The need to take external factors into ac-
count leads to priority scheduling. The basic idea is straightforward: each proc-
ess is assigned a priority, and the runnable process with the highest priority is al-
lowed to run.

Even on a PC with a single owner, there may be multiple processes, some of
them more important than others. For example, a daemon process sending elec-
tronic mail in the background should be assigned a lower priority than a process
displaying a video film on the screen in real time.

To prevent high-priority processes from running indefinitely, the scheduler
may decrease the priority of the currently running process at each clock tick (i.e.,
at each clock interrupt). If this action causes its priority to drop below that of the
next highest process, a process switch occurs. Alternatively, each process may be
assigned a maximum time quantum that it is allowed to run. When this quantum is
used up, the next-highest-priority process is given a chance to run.

Priorities can be assigned to processes statically or dynamically. On a military
computer, processes started by generals might begin at priority 100, processes
started by colonels at 90, majors at 80, captains at 70, lieutenants at 60, and so on
down the totem pole. Alternatively, at a commercial computer center, high-priority
jobs might cost $100 an hour, medium priority $75 an hour, and low priority $50
an hour. The UNIX system has a command, nice, which allows a user to voluntar-
ily reduce the priority of his process, in order to be nice to the other users. Nobody
ever uses it.

Priorities can also be assigned dynamically by the system to achieve certain
system goals. For example, some processes are highly I/O bound and spend most
of their time waiting for I/O to complete. Whenever such a process wants the CPU,
it should be given the CPU immediately, to let it start its next I/O request, which
can then proceed in parallel with another process actually computing. Making the
I/O-bound process wait a long time for the CPU will just mean having it around
occupying memory for an unnecessarily long time. A simple algorithm for giving
good service to I/O-bound processes is to set the priority to 1/f, where f'is the frac-
tion of the last quantum that a process used. A process that used only 1 msec of its
50-msec quantum would get priority 50, while a process that ran 25 msec before
blocking would get priority 2, and a process that used the whole quantum would
get priority 1.

It is often convenient to group processes into priority classes and use priority
scheduling among the classes but round-robin scheduling within each class. Figure
2-43 shows a system with four priority classes. The scheduling algorithm is as fol-
lows: as long as there are runnable processes in priority class 4, just run each one
for one quantum, round-robin fashion, and never bother with lower-priority classes.
If priority class 4 is empty, then run the class 3 processes round robin. If classes 4
and 3 are both empty, then run class 2 round robin, and so on. If priorities are not
adjusted occasionally, lower-priority classes may all starve to death.

SEC. 24 SCHEDULING 161

Queue Runnable processes
headers

Priority 4 —D—D—D (Highest priority)
Priority 2 —|:|

Priority 1 (Lowest priority)

Figure 2-43. A scheduling algorithm with four priority classes.

Multiple Queues

One of the earliest priority schedulers was in CTSS, the M..T. Compatible
TimeSharing System that ran on the IBM 7094 (Corbaté et al., 1962). CTSS had
the problem that process switching was slow because the 7094 could hold only one
process in memory. Each switch meant swapping the current process to disk and
reading in a new one from disk. The CTSS designers quickly realized that it was
more efficient to give CPU-bound processes a large quantum once in a while, rath-
er than giving them small quanta frequently (to reduce swapping). On the other
hand, giving all processes a large quantum would mean poor response time, as we
have already seen. Their solution was to set up priority classes. Processes in the
highest class were run for one quantum. Processes in the next-highest class were
run for two quanta. Processes in the next one were run for four quanta, etc. When-
ever a process used up all the quanta allocated to it, it was moved down one class.

As an example, consider a process that needed to compute continuously for
100 quanta. It would initially be given one quantum, then swapped out. Next time
it would get two quanta before being swapped out. On succeeding runs it would
get 4, 8, 16,32, and 64 quanta, although it would have used only 37 of the final 64
quanta to complete its work. Only 7 swaps would be needed (including the initial
load) instead of 100 with a pure round-robin algorithm. Furthermore, as the proc-
ess sank deeper and deeper into the priority queues, it would be run less and less
frequently, saving the CPU for short, interactive processes.

The following policy was adopted to avoid punishing forever a process that
needed to run for a long time when it first started but became interactive later.
Whenever a carriage return (Enter key) was typed at a terminal, the process be-
longing to that terminal was moved to the highest-priority class, on the assumption
that it was about to become interactive. One fine day, some user with a heavily
CPU-bound process discovered that just sitting at the terminal and typing carriage
returns at random every few seconds did wonders for his response time. He told all
his friends. They told all their friends. Moral of the story: getting it right in prac-
tice is much harder than getting it right in principle.

162 PROCESSES AND THREADS CHAP. 2
Shortest Process Next

Because shortest job first always produces the minimum average response time
for batch systems, it would be nice if it could be used for interactive processes as
well. To a certain extent, it can be. Interactive processes generally follow the pat-
tern of wait for command, execute command, wait for command, execute com-
mand, etc. If we regard the execution of each command as a separate “job,” then
we can minimize overall response time by running the shortest one first. The prob-
lem is figuring out which of the currently runnable processes is the shortest one.

One approach is to make estimates based on past behavior and run the process
with the shortest estimated running time. Suppose that the estimated time per com-
mand for some process is T,. Now suppose its next run is measured to be 7;. We
could update our estimate by taking a weighted sum of these two numbers, that is,
aTy + (1 — a)T;. Through the choice of a we can decide to have the estimation
process forget old runs quickly, or remember them for a long time. With a = 1/2,
we get successive estimates of

Ty, Tol2+T1/2, Told+Ti/4+Ts/2, TolS+T,/8+ Tyld+ T2

After three new runs, the weight of 7, in the new estimate has dropped to 1/8.

The technique of estimating the next value in a series by taking the weighted
average of the current measured value and the previous estimate is sometimes cal-
led aging. It is applicable to many situations where a prediction must be made
based on previous values. Aging is especially easy to implement when a = 1/2. All
that is needed is to add the new value to the current estimate and divide the sum by
2 (by shifting it right 1 bit).

Guaranteed Scheduling

A completely different approach to scheduling is to make real promises to the
users about performance and then live up to those promises. One promise that is
realistic to make and easy to live up to is this: If n users are logged in while you are
working, you will receive about 1/n of the CPU power. Similarly, on a single-user
system with n processes running, all things being equal, each one should get 1/n of
the CPU cycles. That seems fair enough.

To make good on this promise, the system must keep track of how much CPU
each process has had since its creation. It then computes the amount of CPU each
one is entitled to, namely the time since creation divided by n. Since the amount of
CPU time each process has actually had is also known, it is fairly straightforward
to compute the ratio of actual CPU time consumed to CPU time entitled. A ratio
of 0.5 means that a process has only had half of what it should have had, and a
ratio of 2.0 means that a process has had twice as much as it was entitled to. The
algorithm is then to run the process with the lowest ratio until its ratio has moved
above that of its closest competitor. Then that one is chosen to run next.

SEC. 24 SCHEDULING 163
Lottery Scheduling

While making promises to the users and then living up to them is a fine idea, it
is difficult to implement. However, another algorithm can be used to give similarly
predictable results with a much simpler implementation. It is called lottery
scheduling (Waldspurger and Weihl, 1994).

The basic idea is to give processes lottery tickets for various system resources,
such as CPU time. Whenever a scheduling decision has to be made, a lottery ticket
is chosen at random, and the process holding that ticket gets the resource. When
applied to CPU scheduling, the system might hold a lottery 50 times a second, with
each winner getting 20 msec of CPU time as a prize.

To paraphrase George Orwell: “All processes are equal, but some processes
are more equal.” More important processes can be given extra tickets, to increase
their odds of winning. If there are 100 tickets outstanding, and one process holds
20 of them, it will have a 20% chance of winning each lottery. In the long run, it
will get about 20% of the CPU. In contrast to a priority scheduler, where it is very
hard to state what having a priority of 40 actually means, here the rule is clear: a
process holding a fraction f of the tickets will get about a fraction f of the resource
in question.

Lottery scheduling has several interesting properties. For example, if a new
process shows up and is granted some tickets, at the very next lottery it will have a
chance of winning in proportion to the number of tickets it holds. In other words,
lottery scheduling is highly responsive.

Cooperating processes may exchange tickets if they wish. For example, when a
client process sends a message to a server process and then blocks, it may give all
of its tickets to the server, to increase the chance of the server running next. When
the server is finished, it returns the tickets so that the client can run again. In fact,
in the absence of clients, servers need no tickets at all.

Lottery scheduling can be used to solve problems that are difficult to handle
with other methods. One example is a video server in which several processes are
feeding video streams to their clients, but at different frame rates. Suppose that the
processes need frames at 10, 20, and 25 frames/sec. By allocating these processes
10, 20, and 25 tickets, respectively, they will automatically divide the CPU in
approximately the correct proportion, that is, 10 : 20 : 25.

Fair-Share Scheduling

So far we have assumed that each process is scheduled on its own, without
regard to who its owner is. As a result, if user 1 starts up nine processes and user 2
starts up one process, with round robin or equal priorities, user 1 will get 90% of
the CPU and user 2 only 10% of it.

To prevent this situation, some systems take into account which user owns a
process before scheduling it. In this model, each user is allocated some fraction of

164 PROCESSES AND THREADS CHAP. 2

the CPU and the scheduler picks processes in such a way as to enforce it. Thus if
two users have each been promised 50% of the CPU, they will each get that, no
matter how many processes they have in existence.

As an example, consider a system with two users, each of which has been
promised 50% of the CPU. User 1 has four processes, A, B, C, and D, and user 2
has only one process, E. If round-robin scheduling is used, a possible scheduling
sequence that meets all the constraints is this one:

AEBECEDEAEBECEDE ..

On the other hand, if user 1 is entitled to twice as much CPU time as user 2, we
might get

ABECDEABECDE ..

Numerous other possibilities exist, of course, and can be exploited, depending on
what the notion of fairness is.

2.44 Scheduling in Real-Time Systems

A real-time system is one in which time plays an essential role. Typically, one
or more physical devices external to the computer generate stimuli, and the com-
puter must react appropriately to them within a fixed amount of time. For example,
the computer in a compact disc player gets the bits as they come off the drive and
must convert them into music within a very tight time interval. If the calculation
takes too long, the music will sound peculiar. Other real-time systems are patient
monitoring in a hospital intensive-care unit, the autopilot in an aircraft, and robot
control in an automated factory. In all these cases, having the right answer but
having it too late is often just as bad as not having it at all.

Real-time systems are generally categorized as hard real time, meaning there
are absolute deadlines that must be met—or else! — and soft real time, meaning
that missing an occasional deadline is undesirable, but nevertheless tolerable. In
both cases, real-time behavior is achieved by dividing the program into a number
of processes, each of whose behavior is predictable and known in advance. These
processes are generally short lived and can run to completion in well under a sec-
ond. When an external event is detected, it is the job of the scheduler to schedule
the processes in such a way that all deadlines are met.

The events that a real-time system may have to respond to can be further cate-
gorized as periodic (meaning they occur at regular intervals) or aperiodic (mean-
ing they occur unpredictably). A system may have to respond to multiple periodic-
event streams. Depending on how much time each event requires for processing,
handling all of them may not even be possible. For example, if there are m periodic
events and event i occurs with period P; and requires C; sec of CPU time to handle
each event, then the load can be handled only if

SEC. 24 SCHEDULING 165

<]

i

'Ms
|0

I
—_

1

A real-time system that meets this criterion is said to be schedulable. This means
it can actually be implemented. A process that fails to meet this test cannot be
scheduled because the total amount of CPU time the processes want collectively is
more than the CPU can deliver.

As an example, consider a soft real-time system with three periodic events,
with periods of 100, 200, and 500 msec, respectively. If these events require 50,
30, and 100 msec of CPU time per event, respectively, the system is schedulable
because 0.5 +0.15 4+ 0.2 < 1. If a fourth event with a period of 1 sec is added, the
system will remain schedulable as long as this event does not need more than 150
msec of CPU time per event. Implicit in this calculation is the assumption that the
context-switching overhead is so small that it can be ignored.

Real-time scheduling algorithms can be static or dynamic. The former make
their scheduling decisions before the system starts running. The latter make their
scheduling decisions at run time, after execution has started. Static scheduling
works only when there is perfect information available in advance about the work
to be done and the deadlines that have to be met. Dynamic scheduling algorithms
do not have these restrictions.

2.4.5 Policy Versus Mechanism

Up until now, we have tacitly assumed that all the processes in the system be-
long to different users and are thus competing for the CPU. While this is often
true, sometimes it happens that one process has many children running under its
control. For example, a database-management-system process may have many
children. Each child might be working on a different request, or each might have
some specific function to perform (query parsing, disk access, etc.). It is entirely
possible that the main process has an excellent idea of which of its children are the
most important (or time critical) and which the least. Unfortunately, none of the
schedulers discussed above accept any input from user processes about scheduling
decisions. As a result, the scheduler rarely makes the best choice.

The solution to this problem is to separate the scheduling mechanism from
the scheduling policy, a long-established principle (Levin et al., 1975). What this
means is that the scheduling algorithm is parameterized in some way, but the pa-
rameters can be filled in by user processes. Let us consider the database example
once again. Suppose that the kernel uses a priority-scheduling algorithm but pro-
vides a system call by which a process can set (and change) the priorities of its
children. In this way, the parent can control how its children are scheduled, even
though it itself does not do the scheduling. Here the mechanism is in the kernel but
policy is set by a user process. Policy-mechanism separation is a key idea.

166 PROCESSES AND THREADS CHAP. 2

2.4.6 Thread Scheduling

When several processes each have multiple threads, we have two levels of par-
allelism present: processes and threads. Scheduling in such systems differs sub-
stantially depending on whether user-level threads or kernel-level threads (or both)
are supported.

Let us consider user-level threads first. Since the kernel is not aware of the ex-
istence of threads, it operates as it always does, picking a process, say, A, and giv-
ing A control for its quantum. The thread scheduler inside A decides which thread
to run, say A/. Since there are no clock interrupts to multiprogram threads, this
thread may continue running as long as it wants to. If it uses up the process’ entire
quantum, the kernel will select another process to run.

When the process A finally runs again, thread A/ will resume running. It will
continue to consume all of A’s time until it is finished. However, its antisocial be-
havior will not affect other processes. They will get whatever the scheduler con-
siders their appropriate share, no matter what is going on inside process A.

Now consider the case that A’s threads have relatively little work to do per
CPU burst, for example, 5 msec of work within a 50-msec quantum. Consequently,
each one runs for a little while, then yields the CPU back to the thread scheduler.
This might lead to the sequence Al, A2, A3, Al,A2,A3,Al, A2, A3, Al, before the
kernel switches to process B. This situation is illustrated in Fig. 2-44(a).

Process A Process B Process A Process B
Order in which

threads run \
Y

2. Run-time 1 @ (3
system
picks a —

thread =] | =l
/ N
L1. Kernel picks a process 1. Kernel picks a thread E
Possible: A1, A2, A3, A1, A2, A3 Possible: A1, A2, A3, A1, A2, A3
Not possible: A1, B1, A2, B2, A3, B3 Also possible: A1, B1, A2, B2, A3, B3

(@) ()

Figure 2-44. (a) Possible scheduling of user-level threads with a 50-msec proc-
ess quantum and threads that run 5 msec per CPU burst. (b) Possible scheduling
of kernel-level threads with the same characteristics as (a).

The scheduling algorithm used by the run-time system can be any of the ones
described above. In practice, round-robin scheduling and priority scheduling are
most common. The only constraint is the absence of a clock to interrupt a thread
that has run too long. Since threads cooperate, this is usually not an issue.

SEC. 24 SCHEDULING 167

Now consider the situation with kernel-level threads. Here the kernel picks a
particular thread to run. It does not have to take into account which process the
thread belongs to, but it can if it wants to. The thread is given a quantum and is for-
cibly suspended if it exceeds the quantum. With a 50-msec quantum but threads
that block after 5 msec, the thread order for some period of 30 msec might be A/,
Bl, A2, B2, A3, B3, something not possible with these parameters and user-level
threads. This situation is partially depicted in Fig. 2-44(b).

A major difference between user-level threads and kernel-level threads is the
performance. Doing a thread switch with user-level threads takes a handful of ma-
chine instructions. With kernel-level threads it requires a full context switch,
changing the memory map and invalidating the cache, which is several orders of
magnitude slower. On the other hand, with kernel-level threads, having a thread
block on I/O does not suspend the entire process as it does with user-level threads.

Since the kernel knows that switching from a thread in process A to a thread in
process B is more expensive than running a second thread in process A (due to hav-
ing to change the memory map and having the memory cache spoiled), it can take
this information into account when making a decision. For example, given two
threads that are otherwise equally important, with one of them belonging to the
same process as a thread that just blocked and one belonging to a different process,
preference could be given to the former.

Another important factor is that user-level threads can employ an applica-
tion-specific thread scheduler. Consider, for example, the Web server of Fig. 2-8.
Suppose that a worker thread has just blocked and the dispatcher thread and two
worker threads are ready. Who should run next? The run-time system, knowing
what all the threads do, can easily pick the dispatcher to run next, so that it can
start another worker running. This strategy maximizes the amount of parallelism in
an environment where workers frequently block on disk I/O. With kernel-level
threads, the kernel would never know what each thread did (although they could be
assigned different priorities). In general, however, application-specific thread
schedulers can tune an application better than the kernel can.

2.5 CLASSICAL IPC PROBLEMS

The operating systems literature is full of interesting problems that have been
widely discussed and analyzed using a variety of synchronization methods. In the
following sections we will examine three of the better-known problems.

2.5.1 The Dining Philosophers Problem

In 1965, Dijkstra posed and then solved a synchronization problem he called
the dining philosophers problem. Since that time, everyone inventing yet another
synchronization primitive has felt obligated to demonstrate how wonderful the new

168 PROCESSES AND THREADS CHAP. 2

primitive is by showing how elegantly it solves the dining philosophers problem.
The problem can be stated quite simply as follows. Five philosophers are seated
around a circular table. Each philosopher has a plate of spaghetti. The spaghetti is
so slippery that a philosopher needs two forks to eat it. Between each pair of plates
is one fork. The layout of the table is illustrated in Fig. 2-45.

/i/"//

TR

g

Figure 2-45. Lunch time in the Philosophy Department.

The life of a philosopher consists of alternating periods of eating and thinking.
(This is something of an abstraction, even for philosophers, but the other activities
are irrelevant here.) When a philosopher gets sufficiently hungry, she tries to ac-
quire her left and right forks, one at a time, in either order. If successful in acquir-
ing two forks, she eats for a while, then puts down the forks, and continues to
think. The key question is: Can you write a program for each philosopher that does
what it is supposed to do and never gets stuck? (It has been pointed out that the
two-fork requirement is somewhat artificial; perhaps we should switch from Italian
food to Chinese food, substituting rice for spaghetti and chopsticks for forks.)

Figure 2-46 shows the obvious solution. The procedure take_fork waits until
the specified fork is available and then seizes it. Unfortunately, the obvious solu-
tion is wrong. Suppose that all five philosophers take their left forks simultan-
eously. None will be able to take their right forks, and there will be a deadlock.

We could easily modify the program so that after taking the left fork, the pro-
gram checks to see if the right fork is available. If it is not, the philosopher puts
down the left one, waits for some time, and then repeats the whole process. This
proposal too, fails, although for a different reason. With a little bit of bad luck, all
the philosophers could start the algorithm simultaneously, picking up their left
forks, seeing that their right forks were not available, putting down their left forks,

SEC. 2.5 CLASSICAL IPC PROBLEMS 169

#define N 5 /* number of philosophers */

void philosopher(int i) /* i: philosopher number, from 0 to 4 */

{
while (TRUE) {

think(); /* philosopher is thinking */

take_fork(i); /* take left fork */

take_fork((i+1) % N); /* take right fork; % is modulo operator */
eat(); /* yum-yum, spaghetti */

put_fork(i); /* put left fork back on the table */
put_fork((i+1) % N); /* put right fork back on the table */

Figure 2-46. A nonsolution to the dining philosophers problem.

waiting, picking up their left forks again simultaneously, and so on, forever. A
situation like this, in which all the programs continue to run indefinitely but fail to
make any progress, is called starvation. (It is called starvation even when the
problem does not occur in an Italian or a Chinese restaurant.)

Now you might think that if the philosophers would just wait a random time
instead of the same time after failing to acquire the right-hand fork, the chance that
everything would continue in lockstep for even an hour is very small. This obser-
vation is true, and in nearly all applications trying again later is not a problem. For
example, in the popular Ethernet local area network, if two computers send a pack-
et at the same time, each one waits a random time and tries again; in practice this
solution works fine. However, in a few applications one would prefer a solution
that always works and cannot fail due to an unlikely series of random numbers.
Think about safety control in a nuclear power plant.

One improvement to Fig. 2-46 that has no deadlock and no starvation is to pro-
tect the five statements following the call to think by a binary semaphore. Before
starting to acquire forks, a philosopher would do a down on mutex. After replacing
the forks, she would do an up on mutex. From a theoretical viewpoint, this solu-
tion is adequate. From a practical one, it has a performance bug: only one philoso-
pher can be eating at any instant. With five forks available, we should be able to
allow two philosophers to eat at the same time.

The solution presented in Fig. 2-47 is deadlock-free and allows the maximum
parallelism for an arbitrary number of philosophers. It uses an array, state, to keep
track of whether a philosopher is eating, thinking, or hungry (trying to acquire
forks). A philosopher may move into eating state only if neither neighbor is eat-
ing. Philosopher i’s neighbors are defined by the macros LEFT and RIGHT. In
other words, if i is 2, LEFT is 1 and RIGHT is 3.

The program uses an array of semaphores, one per philosopher, so hungry
philosophers can block if the needed forks are busy. Note that each process runs
the procedure philosopher as its main code, but the other procedures, take_forks,
put_forks, and test, are ordinary procedures and not separate processes.

170 PROCESSES AND THREADS CHAP. 2

#define N 5 /* number of philosophers */
#define LEFT (i+N-1)%N /* number of i’s left neighbor */
#define RIGHT (i+1)%N /* number of i’s right neighbor */
#define THINKING 0O /* philosopher is thinking */
#define HUNGRY 1 /* philosopher is trying to get forks */
#define EATING 2 /* philosopher is eating */
typedef int semaphore; /* semaphores are a special kind of int */
int state[N]; /* array to keep track of everyone’s state */
semaphore mutex = 1; /* mutual exclusion for critical regions */
semaphore s[N]; /* one semaphore per philosopher */
void philosopher(int i) /* i: philosopher number, from 0 to N-1 */
while (TRUE) { /* repeat forever */
think(); /* philosopher is thinking */
take _forks(i); /* acquire two forks or block */
eat(); /* yum-yum, spaghetti */
put_forks(i); /* put both forks back on table */
}
}
void take _forks(int i) /* i: philosopher number, from 0 to N-1 */
{
down(&mutex); /* enter critical region */
state[i] = HUNGRY; /* record fact that philosopher i is hungry */
test(i); /* try to acquire 2 forks */
up(&mutex); /* exit critical region */
down(&sli]); /* block if forks were not acquired */
}
void put_forks(i) /* iz philosopher number, from 0 to N-1 */
{
down(&mutex); /* enter critical region */
state[i] = THINKING; /* philosopher has finished eating */
test(LEFT); /* see if left neighbor can now eat */
test(RIGHT); /* see if right neighbor can now eat */
up(&mutex); /* exit critical region */
}
void test(i) /* i: philosopher number, from 0 to N-1 */
{
if (state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
state[i] = EATING;
up(&s[il);
}
}

Figure 2-47. A solution to the dining philosophers problem.

SEC. 2.5 CLASSICAL IPC PROBLEMS 171

2.5.2 The Readers and Writers Problem

The dining philosophers problem is useful for modeling processes that are
competing for exclusive access to a limited number of resources, such as I/O de-
vices. Another famous problem is the readers and writers problem (Courtois et al.,
1971), which models access to a database. Imagine, for example, an airline reser-
vation system, with many competing processes wishing to read and write it. It is
acceptable to have multiple processes reading the database at the same time, but if
one process is updating (writing) the database, no other processes may have access
to the database, not even readers. The question is how do you program the readers

and the writers? One solution is shown in Fig. 2-48.

typedef int semaphore;
semaphore mutex = 1;
semaphore db = 1;
intrc = 0;

void reader(void)

while (TRUE) {
down(&mutex);
rc=rc+1;
if (rc == 1) down(&db);
up(&mutex);
read_data_base();
down(&mutex);
rc=rc—1;
if (rc == 0) up(&db);
up(&mutex);
use_data_read();

void writer(void)
{
while (TRUE) {
think_up_data();
down(&db);
write_data_base();
up(&db);

/* use your imagination */

/* controls access to rc */

/* controls access to the database */

/* # of processes reading or wanting to */

/* repeat forever */

/* get exclusive access to rc */

/* one reader more now */

/* if this is the first reader ... */

/* release exclusive access to rc */
/* access the data */

/* get exclusive access to rc */

/* one reader fewer now */

/* if this is the last reader ... */

/* release exclusive access to rc */
/* noncritical region */

/* repeat forever */

/* noncritical region */

/* get exclusive access */

/* update the data */

/* release exclusive access */

Figure 2-48. A solution to the readers and writers problem.

In this solution, the first reader to get access to the database does a down on the
semaphore db. Subsequent readers merely increment a counter, rc. As readers

172 PROCESSES AND THREADS CHAP. 2

leave, they decrement the counter, and the last to leave does an up on the sema-
phore, allowing a blocked writer, if there is one, to get in.

The solution presented here implicitly contains a subtle decision worth noting.
Suppose that while a reader is using the database, another reader comes along.
Since having two readers at the same time is not a problem, the second reader is
admitted. Additional readers can also be admitted if they come along.

Now suppose a writer shows up. The writer may not be admitted to the data-
base, since writers must have exclusive access, so the writer is suspended. Later,
additional readers show up. As long as at least one reader is still active, subse-
quent readers are admitted. As a consequence of this strategy, as long as there is a
steady supply of readers, they will all get in as soon as they arrive. The writer will
be kept suspended until no reader is present. If a new reader arrives, say, every 2
sec, and each reader takes 5 sec to do its work, the writer will never get in.

To avoid this situation, the program could be written slightly differently: when
a reader arrives and a writer is waiting, the reader is suspended behind the writer
instead of being admitted immediately. In this way, a writer has to wait for readers
that were active when it arrived to finish but does not have to wait for readers that
came along after it. The disadvantage of this solution is that it achieves less con-
currency and thus lower performance. Courtois et al. present a solution that gives
priority to writers. For details, we refer you to the paper.

2.6 RESEARCH ON PROCESSES AND THREADS

In Chap. 1, we looked at some of the current research in operating system
structure. In this and subsequent chapters we will look at more narrowly focused
research, starting with processes. As will become clear in time, some subjects are
much more settled than others. Most of the research tends to be on the new topics,
rather than ones that have been around for decades.

The concept of a process is an example of something that is fairly well settled.
Almost every system has some notion of a process as a container for grouping to-
gether related resources such as an address space, threads, open files, protection
permissions, and so on. Different systems do the grouping slightly differently, but
these are just engineering differences. The basic idea is not very controversial any
more, and there is little new research on the subject of processes.

Threads are a newer idea than processes, but they, too, have been chewed over
quite a bit. Still, the occasional paper about threads appears from time to time, for
example, about thread clustering on multiprocessors (Tam et al., 2007), or on how
well modern operating systems like Linux scale with many threads and many cores
(Boyd-Wickizer, 2010).

One particularly active research area deals with recording and replaying a
process’ execution (Viennot et al., 2013). Replaying helps developers track down
hard-to-find bugs and security experts to investigate incidents.

SEC. 2.6 RESEARCH ON PROCESSES AND THREADS 173

Similarly, much research in the operating systems community these days fo-
cuses on security issues. Numerous incidents have demonstrated that users need
better protection from attackers (and, occasionally, from themselves). One ap-
proach is to track and restrict carefully the information flows in an operating sys-
tem (Giffin et al., 2012).

Scheduling (both uniprocessor and multiprocessor) is still a topic near and dear
to the heart of some researchers. Some topics being researched include energy-ef-
ficient scheduling on mobile devices (Yuan and Nahrstedt, 2006), hyperthread-
ing-aware scheduling (Bulpin and Pratt, 2005), and bias-aware scheduling
(Koufaty, 2010). With increasing computation on underpowered, battery-constrain-
ed smartphones, some researchers propose to migrate the process to a more pow-
erful server in the cloud, as and when useful (Gordon et al., 2012). However, few
actual system designers are walking around all day wringing their hands for lack of
a decent thread-scheduling algorithm, so it appears that this type of research is
more researcher-push than demand-pull. All in all, processes, threads, and schedul-
ing are not hot topics for research as they once were. The research has moved on to
topics like power management, virtualization, clouds, and security.

2.7 SUMMARY

To hide the effects of interrupts, operating systems provide a conceptual model
consisting of sequential processes running in parallel. Processes can be created and
terminated dynamically. Each process has its own address space.

For some applications it is useful to have multiple threads of control within a
single process. These threads are scheduled independently and each one has its
own stack, but all the threads in a process share a common address space. Threads
can be implemented in user space or in the kernel.

Processes can communicate with one another using interprocess communica-
tion primitives, for example, semaphores, monitors, or messages. These primitives
are used to ensure that no two processes are ever in their critical regions at the
same time, a situation that leads to chaos. A process can be running, runnable, or
blocked and can change state when it or another process executes one of the
interprocess communication primitives. Interthread communication is similar.

Interprocess communication primitives can be used to solve such problems as
the producer-consumer, dining philosophers, and reader-writer. Even with these
primitives, care has to be taken to avoid errors and deadlocks.

A great many scheduling algorithms have been studied. Some of these are pri-
marily used for batch systems, such as shortest-job-first scheduling. Others are
common in both batch systems and interactive systems. These algorithms include
round robin, priority scheduling, multilevel queues, guaranteed scheduling, lottery
scheduling, and fair-share scheduling. Some systems make a clean separation be-
tween the scheduling mechanism and the scheduling policy, which allows users to
have control of the scheduling algorithm.

174 PROCESSES AND THREADS CHAP. 2

10.

11.

12.

13.

PROBLEMS

. In Fig. 2-2, three process states are shown. In theory, with three states, there could be

six transitions, two out of each state. However, only four transitions are shown. Are
there any circumstances in which either or both of the missing transitions might occur?

. Suppose that you were to design an advanced computer architecture that did process

switching in hardware, instead of having interrupts. What information would the CPU
need? Describe how the hardware process switching might work.

. On all current computers, at least part of the interrupt handlers are written in assembly

language. Why?

. When an interrupt or a system call transfers control to the operating system, a kernel

stack area separate from the stack of the interrupted process is generally used. Why?

. A computer system has enough room to hold five programs in its main memory. These

programs are idle waiting for I/O half the time. What fraction of the CPU time is
wasted?

. A computer has 4 GB of RAM of which the operating system occupies 512 MB. The

processes are all 256 MB (for simplicity) and have the same characteristics. If the goal
is 99% CPU utilization, what is the maximum I/O wait that can be tolerated?

. Multiple jobs can run in parallel and finish faster than if they had run sequentially.

Suppose that two jobs, each needing 20 minutes of CPU time, start simultaneously.
How long will the last one take to complete if they run sequentially? How long if they
run in parallel? Assume 50% I/O wait.

. Consider a multiprogrammed system with degree of 6 (i.e., six programs in memory at

the same time). Assume that each process spends 40% of its time waiting for I/O. What
will be the CPU utilization?

. Assume that you are trying to download a large 2-GB file from the Internet. The file is

available from a set of mirror servers, each of which can deliver a subset of the file’s
bytes; assume that a given request specifies the starting and ending bytes of the file.
Explain how you might use threads to improve the download time.

In the text it was stated that the model of Fig. 2-11(a) was not suited to a file server
using a cache in memory. Why not? Could each process have its own cache?

If a multithreaded process forks, a problem occurs if the child gets copies of all the
parent’s threads. Suppose that one of the original threads was waiting for keyboard
input. Now two threads are waiting for keyboard input, one in each process. Does this
problem ever occur in single-threaded processes?

In Fig. 2-8, a multithreaded Web server is shown. If the only way to read from a file is
the normal blocking read system call, do you think user-level threads or kernel-level
threads are being used for the Web server? Why?

In the text, we described a multithreaded Web server, showing why it is better than a
single-threaded server and a finite-state machine server. Are there any circumstances in
which a single-threaded server might be better? Give an example.

CHAP. 2 PROBLEMS 175

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

In Fig. 2-12 the register set is listed as a per-thread rather than a per-process item.
Why? After all, the machine has only one set of registers.

Why would a thread ever voluntarily give up the CPU by calling thread_yield? After
all, since there is no periodic clock interrupt, it may never get the CPU back.

Can a thread ever be preempted by a clock interrupt? If so, under what circumstances?
If not, why not?

In this problem you are to compare reading a file using a single-threaded file server
and a multithreaded server. It takes 12 msec to get a request for work, dispatch it, and
do the rest of the necessary processing, assuming that the data needed are in the block
cache. If a disk operation is needed, as is the case one-third of the time, an additional
75 msec is required, during which time the thread sleeps. How many requests/sec can
the server handle if it is single threaded? If it is multithreaded?

What is the biggest advantage of implementing threads in user space? What is the
biggest disadvantage?

In Fig. 2-15 the thread creations and messages printed by the threads are interleaved at
random. Is there a way to force the order to be strictly thread 1 created, thread 1 prints
message, thread 1 exits, thread 2 created, thread 2 prints message, thread 2 exists, and
soon? If so,how? If not, why not?

In the discussion on global variables in threads, we used a procedure create_global to
allocate storage for a pointer to the variable, rather than the variable itself. Is this es-
sential, or could the procedures work with the values themselves just as well?

Consider a system in which threads are implemented entirely in user space, with the
run-time system getting a clock interrupt once a second. Suppose that a clock interrupt
occurs while some thread is executing in the run-time system. What problem might oc-
cur? Can you suggest a way to solve it?

Suppose that an operating system does not have anything like the select system call to
see in advance if it is safe to read from a file, pipe, or device, but it does allow alarm
clocks to be set that interrupt blocked system calls. Is it possible to implement a
threads package in user space under these conditions? Discuss.

Does the busy waiting solution using the furn variable (Fig. 2-23) work when the two
processes are running on a shared-memory multiprocessor, that is, two CPUs sharing a
common memory?

Does Peterson’s solution to the mutual-exclusion problem shown in Fig. 2-24 work
when process scheduling is preemptive? How about when it is nonpreemptive?

Can the priority inversion problem discussed in Sec. 2.3.4 happen with user-level
threads? Why or why not?

In Sec. 2.3 .4, a situation with a high-priority process, H, and a low-priority process, L,
was described, which led to H looping forever. Does the same problem occur if round-
robin scheduling is used instead of priority scheduling? Discuss.

In a system with threads, is there one stack per thread or one stack per process when
user-level threads are used? What about when kernel-level threads are used? Explain.

176 PROCESSES AND THREADS CHAP. 2

28.

29.

30.

31.
32.

33.

34.

35.

36.

When a computer is being developed, it is usually first simulated by a program that
runs one instruction at a time. Even multiprocessors are simulated strictly sequentially
like this. Is it possible for a race condition to occur when there are no simultaneous
events like this?

The producer-consumer problem can be extended to a system with multiple producers
and consumers that write (or read) to (from) one shared buffer. Assume that each pro-
ducer and consumer runs in its own thread. Will the solution presented in Fig. 2-28,
using semaphores, work for this system?

Consider the following solution to the mutual-exclusion problem involving two proc-
esses PO and PI. Assume that the variable turn is initialized to 0. Process P0O’s code is
presented below.

/* Other code */

while (turn !=0) { } /* Do nothing and wait. */
Critical Section /* ... */
turn = 0;

/* Other code */

For process P1, replace O by 1 in above code. Determine if the solution meets all the
required conditions for a correct mutual-exclusion solution.

How could an operating system that can disable interrupts implement semaphores?

Show how counting semaphores (i.e., semaphores that can hold an arbitrary value) can
be implemented using only binary semaphores and ordinary machine instructions.

If a system has only two processes, does it make sense to use a barrier to synchronize
them? Why or why not?

Can two threads in the same process synchronize using a kernel semaphore if the
threads are implemented by the kernel? What if they are implemented in user space?
Assume that no threads in any other processes have access to the semaphore. Discuss
your answers.

Synchronization within monitors uses condition variables and two special operations,
wait and signal. A more general form of synchronization would be to have a single
primitive, waituntil, that had an arbitrary Boolean predicate as parameter. Thus, one
could say, for example,

waituntilx <0 ory+z<n

The signal primitive would no longer be needed. This scheme is clearly more general
than that of Hoare or Brinch Hansen, but it is not used. Why not? (Hint: Think about
the implementation.)

A fast-food restaurant has four kinds of employees: (1) order takers, who take custom-
ers’ orders; (2) cooks, who prepare the food; (3) packaging specialists, who stuff the
food into bags; and (4) cashiers, who give the bags to customers and take their money.
Each employee can be regarded as a communicating sequential process. What form of
interprocess communication do they use? Relate this model to processes in UNIX.

CHAP. 2 PROBLEMS 177

37.

38.

39.

40.

41.

42.

43.

4.

45.

Suppose that we have a message-passing system using mailboxes. When sending to a
full mailbox or trying to receive from an empty one, a process does not block. Instead,
it gets an error code back. The process responds to the error code by just trying again,
over and over, until it succeeds. Does this scheme lead to race conditions?

The CDC 6600 computers could handle up to 10 I/O processes simultaneously using
an interesting form of round-robin scheduling called processor sharing. A process
switch occurred after each instruction, so instruction 1 came from process 1, instruc-
tion 2 came from process 2, etc. The process switching was done by special hardware,
and the overhead was zero. If a process needed T sec to complete in the absence of
competition, how much time would it need if processor sharing was used with n proc-
esses?

Consider the following piece of C code:

void main() {
fork();
fork();
exit();

}

How many child processes are created upon execution of this program?

Round-robin schedulers normally maintain a list of all runnable processes, with each
process occurring exactly once in the list. What would happen if a process occurred
twice in the list? Can you think of any reason for allowing this?

Can a measure of whether a process is likely to be CPU bound or I/0O bound be deter-
mined by analyzing source code? How can this be determined at run time?

Explain how time quantum value and context switching time affect each other, in a
round-robin scheduling algorithm.

Measurements of a certain system have shown that the average process runs for a time
T before blocking on I/0. A process switch requires a time S, which is effectively
wasted (overhead). For round-robin scheduling with quantum Q, give a formula for
the CPU efficiency for each of the following:

(@) Q=00
b o>T
(c)S<Q<T
(do=S
(e) O nearly O

Five jobs are waiting to be run. Their expected run times are 9, 6, 3, 5, and X. In what
order should they be run to minimize average response time? (Your answer will
depend on X.)

Five batch jobs. A through E, arrive at a computer center at almost the same time.
They have estimated running times of 10, 6, 2, 4, and 8 minutes. Their (externally de-
termined) priorities are 3, 5, 2, 1, and 4, respectively, with 5 being the highest priority.
For each of the following scheduling algorithms, determine the mean process
turnaround time. Ignore process switching overhead.

178 PROCESSES AND THREADS CHAP. 2

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

(a) Round robin.

(b) Priority scheduling.

(c) First-come, first-served (run in order 10, 6, 2, 4, 8).
(d) Shortest job first.

For (a), assume that the system is multiprogrammed, and that each job gets its fair
share of the CPU. For (b) through (d), assume that only one job at a time runs, until it
finishes. All jobs are completely CPU bound.

A process running on CTSS needs 30 quanta to complete. How many times must it be
swapped in, including the very first time (before it has run at all)?

Consider a real-time system with two voice calls of periodicity 5 msec each with CPU
time per call of 1 msec, and one video stream of periodicity 33 ms with CPU time per
call of 11 msec. Is this system schedulable?

For the above problem, can another video stream be added and have the system still be
schedulable?

The aging algorithm with a = 1/2 is being used to predict run times. The previous four
runs, from oldest to most recent, are 40, 20, 40, and 15 msec. What is the prediction of
the next time?

A soft real-time system has four periodic events with periods of 50, 100, 200, and 250
msec each. Suppose that the four events require 35, 20, 10, and x msec of CPU time,
respectively. What is the largest value of x for which the system is schedulable?

In the dining philosophers problem, let the following protocol be used: An even-num-
bered philosopher always picks up his left fork before picking up his right fork; an
odd-numbered philosopher always picks up his right fork before picking up his left
fork. Will this protocol guarantee deadlock-free operation?

A real-time system needs to handle two voice calls that each run every 6 msec and con-
sume 1 msec of CPU time per burst, plus one video at 25 frames/sec, with each frame
requiring 20 msec of CPU time. Is this system schedulable?

Consider a system in which it is desired to separate policy and mechanism for the
scheduling of kernel threads. Propose a means of achieving this goal.

In the solution to the dining philosophers problem (Fig. 2-47), why is the state variable
set to HUNGRY in the procedure take_forks?

Consider the procedure put_forks in Fig. 2-47. Suppose that the variable state[i] was
set to THINKING after the two calls to fest, rather than before. How would this change
affect the solution?

The readers and writers problem can be formulated in several ways with regard to
which category of processes can be started when. Carefully describe three different
variations of the problem, each one favoring (or not favoring) some category of proc-
esses. For each variation, specify what happens when a reader or a writer becomes
ready to access the database, and what happens when a process is finished.

Write a shell script that produces a file of sequential numbers by reading the last num-
ber in the file, adding 1 to it, and then appending it to the file. Run one instance of the

CHAP. 2 PROBLEMS 179

58

59.
60.

61.
62.

63.

64.

script in the background and one in the foreground, each accessing the same file. How
long does it take before a race condition manifests itself? What is the critical region?
Modify the script to prevent the race. (Hint: use

In file file.lock
to lock the data file.)

Assume that you have an operating system that provides semaphores. Implement a
message system. Write the procedures for sending and receiving messages.

Solve the dining philosophers problem using monitors instead of semaphores.

Suppose that a university wants to show off how politically correct it is by applying the
U.S. Supreme Court’s “Separate but equal is inherently unequal” doctrine to gender as
well as race, ending its long-standing practice of gender-segregated bathrooms on cam-
pus. However, as a concession to tradition, it decrees that when a woman is in a bath-
room, other women may enter, but no men, and vice versa. A sign with a sliding
marker on the door of each bathroom indicates which of three possible states it is cur-
rently in:

* Empty
* Women present
* Men present

In some programming language you like, write the following procedures:
woman_wants_to_enter, man_wants_to_enter, woman_leaves, man_leaves. You
may use whatever counters and synchronization techniques you like.

Rewrite the program of Fig. 2-23 to handle more than two processes.

Write a producer-consumer problem that uses threads and shares a common buffer.
However, do not use semaphores or any other synchronization primitives to guard the
shared data structures. Just let each thread access them when it wants to. Use sleep
and wakeup to handle the full and empty conditions. See how long it takes for a fatal
race condition to occur. For example, you might have the producer print a number
once in a while. Do not print more than one number every minute because the I/O
could affect the race conditions.

A process can be put into a round-robin queue more than once to give it a higher prior-
ity. Running multiple instances of a program each working on a different part of a data
pool can have the same effect. First write a program that tests a list of numbers for pri-
mality. Then devise a method to allow multiple instances of the program to run at once
in such a way that no two instances of the program will work on the same number. Can
you in fact get through the list faster by running multiple copies of the program? Note
that your results will depend upon what else your computer is doing; on a personal
computer running only instances of this program you would not expect an im-
provement, but on a system with other processes, you should be able to grab a bigger
share of the CPU this way.

The objective of this exercise is to implement a multithreaded solution to find if a
given number is a perfect number. N is a perfect number if the sum of all its factors,
excluding itself, is N; examples are 6 and 28. The input is an integer, N. The output is

180 PROCESSES AND THREADS CHAP. 2

65.

true if the number is a perfect number and false otherwise. The main program will
read the numbers N and P from the command line. The main process will spawn a set
of P threads. The numbers from 1 to N will be partitioned among these threads so that
two threads do not work on the name number. For each number in this set, the thread
will determine if the number is a factor of N. If it is, it adds the number to a shared
buffer that stores factors of N. The parent process waits till all the threads complete.
Use the appropriate synchronization primitive here. The parent will then determine if
the input number is perfect, that is, if N is a sum of all its factors and then report
accordingly. (Note: You can make the computation faster by restricting the numbers
searched from 1 to the square root of N.)

Implement a program to count the frequency of words in a text file. The text file is
partitioned into N segments. Each segment is processed by a separate thread that out-
puts the intermediate frequency count for its segment. The main process waits until all
the threads complete; then it computes the consolidated word-frequency data based on
the individual threads’ output.

MEMORY MANAGEMENT

Main memory (RAM) is an important resource that must be very carefully
managed. While the average home computer nowadays has 10,000 times more
memory than the IBM 7094, the largest computer in the world in the early 1960s,
programs are getting bigger faster than memories. To paraphrase Parkinson’s Law,
“Programs expand to fill the memory available to hold them.” In this chapter we
will study how operating systems create abstractions from memory and how they
manage them.

What every programmer would like is a private, infinitely large, infinitely fast
memory that is also nonvolatile, that is, does not lose its contents when the electric
power is switched off. While we are at it, why not make it inexpensive, too? Un-
fortunately, technology does not provide such memories at present. Maybe you
will discover how to do it.

What is the second choice? Over the years, people discovered the concept of a
memory hierarchy, in which computers have a few megabytes of very fast, expen-
sive, volatile cache memory, a few gigabytes of medium-speed, medium-priced,
volatile main memory, and a few terabytes of slow, cheap, nonvolatile magnetic or
solid-state disk storage, not to mention removable storage, such as DVDs and USB
sticks. It is the job of the operating system to abstract this hierarchy into a useful
model and then manage the abstraction.

The part of the operating system that manages (part of) the memory hierarchy
is called the memory manager. Its job is to efficiently manage memory: keep
track of which parts of memory are in use, allocate memory to processes when
they need it, and deallocate it when they are done.

181

182 MEMORY MANAGEMENT CHAP. 3

In this chapter we will investigate several different memory management mod-
els, ranging from very simple to highly sophisticated. Since managing the lowest
level of cache memory is normally done by the hardware, the focus of this chapter
will be on the programmer’s model of main memory and how it can be managed.
The abstractions for, and the management of, permanent storage—the disk—are
the subject of the next chapter. We will first look at the simplest possible schemes
and then gradually progress to more and more elaborate ones.

3.1 NO MEMORY ABSTRACTION

The simplest memory abstraction is to have no abstraction at all. Early main-
frame computers (before 1960), early minicomputers (before 1970), and early per-
sonal computers (before 1980) had no memory abstraction. Every program simply
saw the physical memory. When a program executed an instruction like

MOV REGISTER1,1000

the computer just moved the contents of physical memory location 1000 to REGIS-
TERI. Thus, the model of memory presented to the programmer was simply phys-
ical memory, a set of addresses from O to some maximum, each address corres-
ponding to a cell containing some number of bits, commonly eight.

Under these conditions, it was not possible to have two running programs in
memory at the same time. If the first program wrote a new value to, say, location
2000, this would erase whatever value the second program was storing there. Noth-
ing would work and both programs would crash almost immediately.

Even with the model of memory being just physical memory, several options
are possible. Three variations are shown in Fig. 3-1. The operating system may be
at the bottom of memory in RAM (Random Access Memory), as shown in
Fig. 3-1(a), or it may be in ROM (Read-Only Memory) at the top of memory, as
shown in Fig. 3-1(b), or the device drivers may be at the top of memory in a ROM
and the rest of the system in RAM down below, as shown in Fig. 3-1(c). The first
model was formerly used on mainframes and minicomputers but is rarely used any
more. The second model is used on some handheld computers and embedded sys-
tems. The third model was used by early personal computers (e.g., running MS-
DOS), where the portion of the system in the ROM is called the BIOS (Basic Input
Output System). Models (a) and (c) have the disadvantage that a bug in the user
program can wipe out the operating system, possibly with disastrous results.

When the system is organized in this way, generally only one process at a time
can be running. As soon as the user types a command, the operating system copies
the requested program from disk to memory and executes it. When the process fin-
ishes, the operating system displays a prompt character and waits for a user new
command. When the operating system receives the command, it loads a new pro-
gram into memory, overwriting the first one.

SEC. 3.1 NO MEMORY ABSTRACTION 183

OxFFF ... -
Operating Device
system in drivers in ROM
ROM
User
program User
program
User
program
Operating Operating
system in system in
RAM RAM
0 0 0

(a) (b) (©

Figure 3-1. Three simple ways of organizing memory with an operating system
and one user process. Other possibilities also exist.

One way to get some parallelism in a system with no memory abstraction is to
program with multiple threads. Since all threads in a process are supposed to see
the same memory image, the fact that they are forced to is not a problem. While
this idea works, it is of limited use since what people often want is unrelated pro-
grams to be running at the same time, something the threads abstraction does not
provide. Furthermore, any system that is so primitive as to provide no memory
abstraction is unlikely to provide a threads abstraction.

Running Multiple Programs Without a Memory Abstraction

However, even with no memory abstraction, it is possible to run multiple pro-
grams at the same time. What the operating system has to do is save the entire con-
tents of memory to a disk file, then bring in and run the next program. As long as
there is only one program at a time in memory, there are no conflicts. This concept
(swapping) will be discussed below.

With the addition of some special hardware, it is possible to run multiple pro-
grams concurrently, even without swapping. The early models of the IBM 360
solved the problem as follows. Memory was divided into 2-KB blocks and each
was assigned a 4-bit protection key held in special registers inside the CPU. A ma-
chine with a 1-MB memory needed only 512 of these 4-bit registers for a total of
256 bytes of key storage. The PSW (Program Status Word) also contained a 4-bit
key. The 360 hardware trapped any attempt by a running process to access memo-
ry with a protection code different from the PSW key. Since only the operating sys-
tem could change the protection keys, user processes were prevented from interfer-
ing with one another and with the operating system itself.

Nevertheless, this solution had a major drawback, depicted in Fig.3-2. Here
we have two programs, each 16 KB in size, as shown in Fig. 3-2(a) and (b). The
former is shaded to indicate that it has a different memory key than the latter. The

184 MEMORY MANAGEMENT CHAP. 3

first program starts out by jumping to address 24, which contains a MOV instruc-
tion. The second program starts out by jumping to address 28, which contains a
CMP instruction. The instructions that are not relevant to this discussion are not
shown. When the two programs are loaded consecutively in memory starting at
address 0, we have the situation of Fig. 3-2(c). For this example, we assume the
operating system is in high memory and thus not shown.

CMP 16412
16408
16404
16400
16396
16392
16388
JMP 28 16384

ADD 28 CMP 28 ADD 28

MOV 24 24 MOV 24

20 20 20

16 16 16

12 12 12

8 8 8

4 4 4

JMP 24 | 0 JMP 28 0 JMP 24 | 0
(a) (b) (©

Figure 3-2. Illustration of the relocation problem. (a) A 16-KB program.
(b) Another 16-KB program. (c) The two programs loaded consecutively
into memory.

After the programs are loaded, they can be run. Since they have different mem-
ory keys, neither one can damage the other. But the problem is of a different
nature. When the first program starts, it executes the JMP 24 instruction, which
jumps to the instruction, as expected. This program functions normally.

However, after the first program has run long enough, the operating system
may decide to run the second program, which has been loaded above the first one,
at address 16,384. The first instruction executed is JMP 28, which jumps to the
ADD instruction in the first program, instead of the CMP instruction it is supposed
to jump to. The program will most likely crash in well under 1 sec.

The core problem here is that the two programs both reference absolute physi-
cal memory. That is not what we want at all. What we want is that each program

SEC. 3.1 NO MEMORY ABSTRACTION 185

can reference a private set of addresses local to it. We will show how this can be
acomplished shortly. What the IBM 360 did as a stop-gap solution was modify the
second program on the fly as it loaded it into memory using a technique known as
static relocation. It worked like this. When a program was loaded at address
16,384, the constant 16,384 was added to every program address during the load
process (so “JMP 28 became “JMP 164127, etc.).While this mechanism works
if done right, it is not a very general solution and slows down loading. Fur-
thermore, it requires extra information in all executable programs to indicate which
words contain (relocatable) addresses and which do not. After all, the “28” in
Fig. 3-2(b) has to be relocated but an instruction like

MOV REGISTER1,28

which moves the number 28 to REGISTERI must not be relocated. The loader
needs some way to tell what is an address and what is a constant.

Finally, as we pointed out in Chap. 1, history tends to repeat itself in the com-
puter world. While direct addressing of physical memory is but a distant memory
on mainframes, minicomputers, desktop computers, notebooks, and smartphones,
the lack of a memory abstraction is still common in embedded and smart card sys-
tems. Devices such as radios, washing machines, and microwave ovens are all full
of software (in ROM) these days, and in most cases the software addresses abso-
lute memory. This works because all the programs are known in advance and users
are not free to run their own software on their toaster.

While high-end embedded systems (such as smartphones) have elaborate oper-
ating systems, simpler ones do not. In some cases, there is an operating system,
but it is just a library that is linked with the application program and provides sys-
tem calls for performing I/O and other common tasks. The e-Cos operating system
is a common example of an operating system as library.

3.2 AMEMORY ABSTRACTION: ADDRESS SPACES

All in all, exposing physical memory to processes has several major draw-
backs. First, if user programs can address every byte of memory, they can easily
trash the operating system, intentionally or by accident, bringing the system to a
grinding halt (unless there is special hardware like the IBM 360°s lock-and-key
scheme). This problem exists even if only one user program (application) is run-
ning. Second, with this model, it is difficult to have multiple programs running at
once (taking turns, if there is only one CPU). On personal computers, it is com-
mon to have several programs open at once (a word processor, an email program, a
Web browser), one of them having the current focus, but the others being reacti-
vated at the click of a mouse. Since this situation is difficult to achieve when there
is no abstraction from physical memory, something had to be done.

186 MEMORY MANAGEMENT CHAP. 3

3.2.1 The Notion of an Address Space

Two problems have to be solved to allow multiple applications to be in memo-
ry at the same time without interfering with each other: protection and relocation.
We looked at a primitive solution to the former used on the IBM 360: label chunks
of memory with a protection key and compare the key of the executing process to
that of every memory word fetched. However, this approach by itself does not
solve the latter problem, although it can be solved by relocating programs as they
are loaded, but this is a slow and complicated solution.

A better solution is to invent a new abstraction for memory: the address space.
Just as the process concept creates a kind of abstract CPU to run programs, the ad-
dress space creates a kind of abstract memory for programs to live in. An address
space is the set of addresses that a process can use to address memory. Each proc-
ess has its own address space, independent of those belonging to other processes
(except in some special circumstances where processes want to share their address
spaces).

The concept of an address space is very general and occurs in many contexts.
Consider telephone numbers. In the United States and many other countries, a
local telephone number is usually a 7-digit number. The address space for tele-
phone numbers thus runs from 0,000,000 to 9,999,999, although some numbers,
such as those beginning with 000 are not used. With the growth of smartphones,
modems, and fax machines, this space is becoming too small, in which case more
digits have to be used. The address space for I/O ports on the x86 runs from O to
16383. IPv4 addresses are 32-bit numbers, so their address space runs from O to
2% (again, with some reserved numbers).

Address spaces do not have to be numeric. The set of .com Internet domains is
also an address space. This address space consists of all the strings of length 2 to
63 characters that can be made using letters, numbers, and hyphens, followed by
.com. By now you should get the idea. It is fairly simple.

Somewhat harder is how to give each program its own address space, so ad-
dress 28 in one program means a different physical location than address 28 in an-
other program. Below we will discuss a simple way that used to be common but
has fallen into disuse due to the ability to put much more complicated (and better)
schemes on modern CPU chips.

Base and Limit Registers

This simple solution uses a particularly simple version of dynamic relocation.
What it does is map each process’ address space onto a different part of physical
memory in a simple way. The classical solution, which was used on machines
ranging from the CDC 6600 (the world’s first supercomputer) to the Intel 8088 (the
heart of the original IBM PC), is to equip each CPU with two special hardware
registers, usually called the base and limit registers. When these registers are used,

SEC. 3.2 A MEMORY ABSTRACTION: ADDRESS SPACES 187

programs are loaded into consecutive memory locations wherever there is room
and without relocation during loading, as shown in Fig. 3-2(c). When a process is
run, the base register is loaded with the physical address where its program begins
in memory and the limit register is loaded with the length of the program. In
Fig. 3-2(c), the base and limit values that would be loaded into these hardware reg-
isters when the first program is run are 0 and 16,384, respectively. The values used
when the second program is run are 16,384 and 32,768, respectively. If a third
16-KB program were loaded directly above the second one and run, the base and
limit registers would be 32,768 and 16,384.

Every time a process references memory, either to fetch an instruction or read
or write a data word, the CPU hardware automatically adds the base value to the
address generated by the process before sending the address out on the memory
bus. Simultaneously, it checks whether the address offered is equal to or greater
than the value in the limit register, in which case a fault is generated and the access
is aborted. Thus, in the case of the first instruction of the second program in
Fig. 3-2(c), the process executes a

JMP 28
instruction, but the hardware treats it as though it were
JMP 16412

so it lands on the CMP instruction as expected. The settings of the base and limit
registers during the execution of the second program of Fig. 3-2(c) are shown in
Fig. 3-3.

Using base and limit registers is an easy way to give each process its own pri-
vate address space because every memory address generated automatically has the
base-register contents added to it before being sent to memory. In many imple-
mentations, the base and limit registers are protected in such a way that only the
operating system can modify them. This was the case on the CDC 6600, but not on
the Intel 8088, which did not even have the limit register. It did have multiple base
registers, allowing program text and data, for example, to be independently relocat-
ed, but offered no protection from out-of-range memory references.

A disadvantage of relocation using base and limit registers is the need to per-
form an addition and a comparison on every memory reference. Comparisons can
be done fast, but additions are slow due to carry-propagation time unless special
addition circuits are used.

3.2.2 Swapping

If the physical memory of the computer is large enough to hold all the proc-
esses, the schemes described so far will more or less do. But in practice, the total
amount of RAM needed by all the processes is often much more than can fit in
memory. On a typical Windows, OS X, or Linux system, something like 50—100

188 MEMORY MANAGEMENT CHAP. 3

16384

CMP 16412
16408
16404
16400
16396
16392
16388
| 16384 |—— JMP28 |16384
0 16380

Limit register

Base register

ADD 28
MOV 24
20
16
12

JMP 24 | 0
(©

Figure 3-3. Base and limit registers can be used to give each process a separate
address space.

processes or more may be started up as soon as the computer is booted. For ex-
ample, when a Windows application is installed, it often issues commands so that
on subsequent system boots, a process will be started that does nothing except
check for updates to the application. Such a process can easily occupy 5-10 MB of
memory. Other background processes check for incoming mail, incoming network
connections, and many other things. And all this is before the first user program is
started. Serious user application programs nowadays, like Photoshop, can easily
require 500 MB just to boot and many gigabytes once they start processing data.
Consequently, keeping all processes in memory all the time requires a huge
amount of memory and cannot be done if there is insufficient memory.

Two general approaches to dealing with memory overload have been devel-
oped over the years. The simplest strategy, called swapping, consists of bringing in
each process in its entirety, running it for a while, then putting it back on the disk.
Idle processes are mostly stored on disk, so they do not take up any memory when
they are not running (although some of them wake up periodically to do their work,
then go to sleep again). The other strategy, called virtual memory, allows pro-
grams to run even when they are only partially in main memory. Below we will
study swapping; in Sec. 3.3 we will examine virtual memory.

SEC. 3.2 A MEMORY ABSTRACTION: ADDRESS SPACES 189

The operation of a swapping system is illustrated in Fig. 3-4. Initially, only
process A is in memory. Then processes B and C are created or swapped in from
disk. In Fig. 3-4(d) A is swapped out to disk. Then D comes in and B goes out.
Finally A comes in again. Since A is now at a different location, addresses con-
tained in it must be relocated, either by software when it is swapped in or (more
likely) by hardware during program execution. For example, base and limit regis-
ters would work fine here.

Time —>
C C C C C
B B B B
A
A A A
D D D

Operating Operating Operating Operating Operating Operating Operating
system system system system system system system

(a) (b) (© (d) () ® (9)

Figure 3-4. Memory allocation changes as processes come into memory and
leave it. The shaded regions are unused memory.

When swapping creates multiple holes in memory, it is possible to combine
them all into one big one by moving all the processes downward as far as possible.
This technique is known as memory compaction. It is usually not done because it
requires a lot of CPU time. For example, on a 16-GB machine that can copy 8
bytes in 8 nsec, it would take about 16 sec to compact all of memory.

A point that is worth making concerns how much memory should be allocated
for a process when it is created or swapped in. If processes are created with a fixed
size that never changes, then the allocation is simple: the operating system allo-
cates exactly what is needed, no more and no less.

If, however, processes’ data segments can grow, for example, by dynamically
allocating memory from a heap, as in many programming languages, a problem oc-
curs whenever a process tries to grow. If a hole is adjacent to the process, it can be
allocated and the process allowed to grow into the hole. On the other hand, if the
process is adjacent to another process, the growing process will either have to be
moved to a hole in memory large enough for it, or one or more processes will have
to be swapped out to create a large enough hole. If a process cannot grow in mem-
ory and the swap area on the disk is full, the process will have to suspended until
some space is freed up (or it can be killed).

190 MEMORY MANAGEMENT CHAP. 3

If it is expected that most processes will grow as they run, it is probably a good
idea to allocate a little extra memory whenever a process is swapped in or moved,
to reduce the overhead associated with moving or swapping processes that no long-
er fit in their allocated memory. However, when swapping processes to disk, only
the memory actually in use should be swapped; it is wasteful to swap the extra
memory as well. In Fig. 3-5(a) we see a memory configuration in which space for
growth has been allocated to two processes.

B-Stack
Room for growth ~ f----- E R
t A } Room for growth
B-Data
B Actually in use
B-Program
A-Stack
Room for growth ~ f----- E R
t A } Room for growth
A-Data
A Actually in use
A-Program
Operating Operating
system system
(a) (b)

Figure 3-5. (a) Allocating space for a growing data segment. (b) Allocating
space for a growing stack and a growing data segment.

If processes can have two growing segments—for example, the data segment
being used as a heap for variables that are dynamically allocated and released and a
stack segment for the normal local variables and return addresses—an alternative
arrangement suggests itself, namely that of Fig. 3-5(b). In this figure we see that
each process illustrated has a stack at the top of its allocated memory that is grow-
ing downward, and a data segment just beyond the program text that is growing
upward. The memory between them can be used for either segment. If it runs out,
the process will either have to be moved to a hole with sufficient space, swapped
out of memory until a large enough hole can be created, or killed.

3.2.3 Managing Free Memory
When memory is assigned dynamically, the operating system must manage it.

In general terms, there are two ways to keep track of memory usage: bitmaps and
free lists. In this section and the next one we will look at these two methods. In

SEC. 3.2 A MEMORY ABSTRACTION: ADDRESS SPACES 191

Chapter 10, we will look at some specific memory allocators used in Linux (like
buddy and slab allocators) in more detail.

Memory Management with Bitmaps

With a bitmap, memory is divided into allocation units as small as a few words
and as large as several kilobytes. Corresponding to each allocation unit is a bit in
the bitmap, which is O if the unit is free and 1 if it is occupied (or vice versa). Fig-
ure 3-6 shows part of memory and the corresponding bitmap.

< VA..°. 1=V,]

N7/ R ;
/% (a)

11111000 |P|O|5|—|—>|H|5|3|—|—>|P|8|6|—|—>|P|14|4|—b

11111111

11001111

1111000 (I/HITIZ\I +>|P|20|6|+>|:|26|3| e CIEJENEY

T T Hole Starts Length Process

at18 2
(b) (c)

Figure 3-6. (a) A part of memory with five processes and three holes. The tick
marks show the memory allocation units. The shaded regions (0 in the bitmap)
are free. (b) The corresponding bitmap. (c) The same information as a list.

The size of the allocation unit is an important design issue. The smaller the al-
location unit, the larger the bitmap. However, even with an allocation unit as small
as 4 bytes, 32 bits of memory will require only 1 bit of the map. A memory of 32n
bits will use » map bits, so the bitmap will take up only 1/32 of memory. If the al-
location unit is chosen large, the bitmap will be smaller, but appreciable memory
may be wasted in the last unit of the process if the process size is not an exact mul-
tiple of the allocation unit.

A bitmap provides a simple way to keep track of memory words in a fixed
amount of memory because the size of the bitmap depends only on the size of
memory and the size of the allocation unit. The main problem is that when it has
been decided to bring a k-unit process into memory, the memory manager must
search the bitmap to find a run of k consecutive O bits in the map. Searching a bit-
map for a run of a given length is a slow operation (because the run may straddle
word boundaries in the map); this is an argument against bitmaps.

192 MEMORY MANAGEMENT CHAP. 3

Memory Management with Linked Lists

Another way of keeping track of memory is to maintain a linked list of allo-
cated and free memory segments, where a segment either contains a process or is
an empty hole between two processes. The memory of Fig. 3-6(a) is represented in
Fig. 3-6(c) as a linked list of segments. Each entry in the list specifies a hole (H) or
process (P), the address at which it starts, the length, and a pointer to the next item.

In this example, the segment list is kept sorted by address. Sorting this way has
the advantage that when a process terminates or is swapped out, updating the list is
straightforward. A terminating process normally has two neighbors (except when
it is at the very top or bottom of memory). These may be either processes or holes,
leading to the four combinations shown in Fig. 3-7. In Fig. 3-7(a) updating the list
requires replacing a P by an H. In Fig. 3-7(b) and Fig. 3-7(c), two entries are coa-
lesced into one, and the list becomes one entry shorter. In Fig. 3-7(d), three entries
are merged and two items are removed from the list.

Since the process table slot for the terminating process will normally point to
the list entry for the process itself, it may be more convenient to have the list as a
double-linked list, rather than the single-linked list of Fig. 3-6(c). This structure
makes it easier to find the previous entry and to see if a merge is possible.

Before X terminates After X terminates

@| A | x| B | bvecomes | A /7] B |
o | A | x U7 vecomes | & 17777
O T oo s
OO werv 07

Figure 3-7. Four neighbor combinations for the terminating process, X.

When the processes and holes are kept on a list sorted by address, several algo-
rithms can be used to allocate memory for a created process (or an existing process
being swapped in from disk). We assume that the memory manager knows how
much memory to allocate. The simplest algorithm is first fit. The memory man-
ager scans along the list of segments until it finds a hole that is big enough. The
hole is then broken up into two pieces, one for the process and one for the unused
memory, except in the statistically unlikely case of an exact fit. First fit is a fast al-
gorithm because it searches as little as possible.

A minor variation of first fit is next fit. It works the same way as first fit, ex-
cept that it keeps track of where it is whenever it finds a suitable hole. The next
time it is called to find a hole, it starts searching the list from the place where it left
off last time, instead of always at the beginning, as first fit does. Simulations by
Bays (1977) show that next fit gives slightly worse performance than first fit.

SEC. 3.2 A MEMORY ABSTRACTION: ADDRESS SPACES 193

Another well-known and widely used algorithm is best fit. Best fit searches
the entire list, from beginning to end, and takes the smallest hole that is adequate.
Rather than breaking up a big hole that might be needed later, best fit tries to find a
hole that is close to the actual size needed, to best match the request and the avail-
able holes.

As an example of first fit and best fit, consider Fig. 3-6 again. If a block of
size 2 is needed, first fit will allocate the hole at 5, but best fit will allocate the hole
at 18.

Best fit is slower than first fit because it must search the entire list every time it
is called. Somewhat surprisingly, it also results in more wasted memory than first
fit or next fit because it tends to fill up memory with tiny, useless holes. First fit
generates larger holes on the average.

To get around the problem of breaking up nearly exact matches into a process
and a tiny hole, one could think about worst fit, that is, always take the largest
available hole, so that the new hole will be big enough to be useful. Simulation has
shown that worst fit is not a very good idea either.

All four algorithms can be speeded up by maintaining separate lists for proc-
esses and holes. In this way, all of them devote their full energy to inspecting
holes, not processes. The inevitable price that is paid for this speedup on allocation
is the additional complexity and slowdown when deallocating memory, since a
freed segment has to be removed from the process list and inserted into the hole
list.

If distinct lists are maintained for processes and holes, the hole list may be kept
sorted on size, to make best fit faster. When best fit searches a list of holes from
smallest to largest, as soon as it finds a hole that fits, it knows that the hole is the
smallest one that will do the job, hence the best fit. No further searching is needed,
as it is with the single-list scheme. With a hole list sorted by size, first fit and best
fit are equally fast, and next fit is pointless.

When the holes are kept on separate lists from the processes, a small optimiza-
tion is possible. Instead of having a separate set of data structures for maintaining
the hole list, as is done in Fig. 3-6(c), the information can be stored in the holes.
The first word of each hole could be the hole size, and the second word a pointer to
the following entry. The nodes of the list of Fig. 3-6(c), which require three words
and one bit (P/H), are no longer needed.

Yet another allocation algorithm is quick fit, which maintains separate lists for
some of the more common sizes requested. For example, it might have a table with
n entries, in which the first entry is a pointer to the head of a list of 4-KB holes, the
second entry is a pointer to a list of 8-KB holes, the third entry a pointer to 12-KB
holes, and so on. Holes of, say, 21 KB, could be put either on the 20-KB list or on
a special list of odd-sized holes.

With quick fit, finding a hole of the required size is extremely fast, but it has
the same disadvantage as all schemes that sort by hole size, namely, when a proc-
ess terminates or is swapped out, finding its neighbors to see if a merge with them

194 MEMORY MANAGEMENT CHAP. 3

is possible is quite expensive. If merging is not done, memory will quickly frag-
ment into a large number of small holes into which no processes fit.

3.3 VIRTUAL MEMORY

While base and limit registers can be used to create the abstraction of address
spaces, there is another problem that has to be solved: managing bloatware. While
memory sizes are increasing rapidly, software sizes are increasing much faster. In
the 1980s, many universities ran a timesharing system with dozens of (more-or-less
satisfied) users running simultaneously on a 4-MB VAX. Now Microsoft recom-
mends having at least 2 GB for 64-bit Windows 8. The trend toward multimedia
puts even more demands on memory.

As a consequence of these developments, there is a need to run programs that
are too large to fit in memory, and there is certainly a need to have systems that can
support multiple programs running simultaneously, each of which fits in memory
but all of which collectively exceed memory. Swapping is not an attractive option,
since a typical SATA disk has a peak transfer rate of several hundreds of MB/sec,
which means it takes seconds to swap out a 1-GB program and the same to swap in
a 1-GB program.

The problem of programs larger than memory has been around since the begin-
ning of computing, albeit in limited areas, such as science and engineering (simu-
lating the creation of the universe or even simulating a new aircraft takes a lot of
memory). A solution adopted in the 1960s was to split programs into little pieces,
called overlays. When a program started, all that was loaded into memory was the
overlay manager, which immediately loaded and ran overlay 0. When it was done,
it would tell the overlay manager to load overlay 1, either above overlay 0 in mem-
ory (if there was space for it) or on top of overlay O (if there was no space). Some
overlay systems were highly complex, allowing many overlays in memory at once.
The overlays were kept on the disk and swapped in and out of memory by the over-
lay manager.

Although the actual work of swapping overlays in and out was done by the op-
erating system, the work of splitting the program into pieces had to be done manu-
ally by the programmer. Splitting large programs up into small, modular pieces
was time consuming, boring, and error prone. Few programmers were good at this.
It did not take long before someone thought of a way to turn the whole job over to
the computer.

The method that was devised (Fotheringham, 1961) has come to be known as
virtual memory. The basic idea behind virtual memory is that each program has
its own address space, which is broken up into chunks called pages. Each page is
a contiguous range of addresses. These pages are mapped onto physical memory,
but not all pages have to be in physical memory at the same time to run the pro-
gram. When the program references a part of its address space that is in physical

SEC. 3.3 VIRTUAL MEMORY 195

memory, the hardware performs the necessary mapping on the fly. When the pro-
gram references a part of its address space that is not in physical memory, the oper-
ating system is alerted to go get the missing piece and re-execute the instruction
that failed.

In a sense, virtual memory is a generalization of the base-and-limit-register
idea. The 8088 had separate base registers (but no limit registers) for text and data.
With virtual memory, instead of having separate relocation for just the text and
data segments, the entire address space can be mapped onto physical memory in
fairly small units. We will show how virtual memory is implemented below.

Virtual memory works just fine in a multiprogramming system, with bits and
pieces of many programs in memory at once. While a program is waiting for
pieces of itself to be read in, the CPU can be given to another process.

3.3.1 Paging

Most virtual memory systems use a technique called paging, which we will
now describe. On any computer, programs reference a set of memory addresses.
When a program executes an instruction like

MOV REG,1000

it does so to copy the contents of memory address 1000 to REG (or vice versa, de-
pending on the computer). Addresses can be generated using indexing, base regis-
ters, segment registers, and other ways.

The CPU sends virtual

CPU addresses to the MMU
package
CPU
/ Memory M Disk
o management emory controller
unit
\ Bus

The MMU sends physical
addresses to the memory

Figure 3-8. The position and function of the MMU. Here the MMU is shown as
being a part of the CPU chip because it commonly is nowadays. However, logi-
cally it could be a separate chip and was years ago.

These program-generated addresses are called virtual addresses and form the
virtual address space. On computers without virtual memory, the virtual address

196 MEMORY MANAGEMENT CHAP. 3

is put directly onto the memory bus and causes the physical memory word with the
same address to be read or written. When virtual memory is used, the virtual ad-
dresses do not go directly to the memory bus. Instead, they go to an MMU (Mem-
ory Management Unit) that maps the virtual addresses onto the physical memory
addresses, as illustrated in Fig. 3-8.

A very simple example of how this mapping works is shown in Fig.3-9. In
this example, we have a computer that generates 16-bit addresses, from O up to
64K — 1. These are the virtual addresses. This computer, however, has only 32 KB
of physical memory. So although 64-KB programs can be written, they cannot be
loaded into memory in their entirety and run. A complete copy of a program’s core
image, up to 64 KB, must be present on the disk, however, so that pieces can be
brought in as needed.

The virtual address space consists of fixed-size units called pages. The corres-
ponding units in the physical memory are called page frames. The pages and page
frames are generally the same size. In this example they are 4 KB, but page sizes
from 512 bytes to a gigabyte have been used in real systems. With 64 KB of virtual
address space and 32 KB of physical memory, we get 16 virtual pages and 8 page
frames. Transfers between RAM and disk are always in whole pages. Many proc-
essors support multiple page sizes that can be mixed and matched as the operating
system sees fit. For instance, the x86-64 architecture supports 4-KB, 2-MB, and
1-GB pages, so we could use 4-KB pages for user applications and a single 1-GB
page for the kernel. We will see later why it is sometimes better to use a single
large page, rather than a large number of small ones.

The notation in Fig. 3-9 is as follows. The range marked OK—4K means that
the virtual or physical addresses in that page are 0 to 4095. The range 4K-8K
refers to addresses 4096 to 8191, and so on. Each page contains exactly 4096 ad-
dresses starting at a multiple of 4096 and ending one shy of a multiple of 4096.

When the program tries to access address 0, for example, using the instruction

MOV REG,0

virtual address O is sent to the MMU. The MMU sees that this virtual address falls
in page 0 (0 to 4095), which according to its mapping is page frame 2 (8192 to
12287). It thus transforms the address to 8192 and outputs address 8192 onto the
bus. The memory knows nothing at all about the MMU and just sees a request for
reading or writing address 8192, which it honors. Thus, the MMU has effectively
mapped all virtual addresses between 0 and 4095 onto physical addresses 8192 to
12287.
Similarly, the instruction

MOV REG,8192

is effectively transformed into

MOV REG,24576

SEC. 3.3 VIRTUAL MEMORY 197

Virtual
address
space
60K-64K X
56K-60K | X | } Virtual page
52K-56K X
48K-52K X
44K-48K 7
40K-44K X Physical
36K—40K | 5 meﬁf@
32K-36K X address
28K-32K X 28K-32K
24K-28K X 24K-28K
20K-24K 3 20K-24K
16K-20K 4 16K—20K
12K-16K 0 \ 12K-16K
8K-12K 6 8K-12K
4K-8K 1 > 4K-8K
0K—-4K 2 \ 0K-4K
Page frame

Figure 3-9. The relation between virtual addresses and physical memory ad-
dresses is given by the page table. Every page begins on a multiple of 4096 and
ends 4095 addresses higher, so 4K—8K really means 4096-8191 and 8K to 12K
means 8192-12287.

because virtual address 8192 (in virtual page 2) is mapped onto 24576 (in physical
page frame 6). As a third example, virtual address 20500 is 20 bytes from the start
of virtual page 5 (virtual addresses 20480 to 24575) and maps onto physical ad-
dress 12288 + 20 = 12308.

By itself, this ability to map the 16 virtual pages onto any of the eight page
frames by setting the MMU’s map appropriately does not solve the problem that
the virtual address space is larger than the physical memory. Since we have only
eight physical page frames, only eight of the virtual pages in Fig. 3-9 are mapped
onto physical memory. The others, shown as a cross in the figure, are not mapped.
In the actual hardware, a Present/absent bit keeps track of which pages are physi-
cally present in memory.

What happens if the program references an unmapped address, for example, by
using the instruction

MOV REG,32780

which is byte 12 within virtual page 8 (starting at 32768)? The MMU notices that
the page is unmapped (indicated by a cross in the figure) and causes the CPU to

198 MEMORY MANAGEMENT CHAP. 3

trap to the operating system. This trap is called a page fault. The operating system
picks a little-used page frame and writes its contents back to the disk (if it is not al-
ready there). It then fetches (also from the disk) the page that was just referenced
into the page frame just freed, changes the map, and restarts the trapped instruc-
tion.

For example, if the operating system decided to evict page frame 1, it would
load virtual page 8 at physical address 4096 and make two changes to the MMU
map. First, it would mark virtual page 1’s entry as unmapped, to trap any future ac-
cesses to virtual addresses between 4096 and 8191. Then it would replace the
cross in virtual page 8’s entry with a 1, so that when the trapped instruction is reex-
ecuted, it will map virtual address 32780 to physical address 4108 (4096 + 12).

Now let us look inside the MMU to see how it works and why we have chosen
to use a page size that is a power of 2. In Fig. 3-10 we see an example of a virtual
address, 8196 (0010000000000100 in binary), being mapped using the MMU map
of Fig. 3-9. The incoming 16-bit virtual address is split into a 4-bit page number
and a 12-bit offset. With 4 bits for the page number, we can have 16 pages, and
with 12 bits for the offset, we can address all 4096 bytes within a page.

The page number is used as an index into the page table, yielding the number
of the page frame corresponding to that virtual page. If the Present/absent bit is 0,
a trap to the operating system is caused. If the bit is 1, the page frame number
found in the page table is copied to the high-order 3 bits of the output register,
along with the 12-bit offset, which is copied unmodified from the incoming virtual
address. Together they form a 15-bit physical address. The output register is then
put onto the memory bus as the physical memory address.

3.3.2 Page Tables

In a simple implementation, the mapping of virtual addresses onto physical ad-
dresses can be summarized as follows: the virtual address is split into a virtual
page number (high-order bits) and an offset (low-order bits). For example, with a
16-bit address and a 4-KB page size, the upper 4 bits could specify one of the 16
virtual pages and the lower 12 bits would then specify the byte offset (0 to 4095)
within the selected page. However a split with 3 or 5 or some other number of bits
for the page is also possible. Different splits imply different page sizes.

The virtual page number is used as an index into the page table to find the
entry for that virtual page. From the page table entry, the page frame number (if
any) is found. The page frame number is attached to the high-order end of the off-
set, replacing the virtual page number, to form a physical address that can be sent
to the memory.

Thus, the purpose of the page table is to map virtual pages onto page frames.
Mathematically speaking, the page table is a function, with the virtual page num-
ber as argument and the physical frame number as result. Using the result of this

SEC. 3.3 VIRTUAL MEMORY 199

Outgoing
[1]1]o]o]Jo[o[o]ofofo]o]o]1]0]0] physical
—— address
A (24580)
15| 000 | O
14| 000 | O
13| 000 | O
12| 000 | O
11 111 1
10| 000 | O
LIS 12-bit offset
-bit offse
T;gz 3 gg(o) g copied directly
from input
6| 000 0 to output
5] 011 1
41 100 |1
3] 000 |1
2| 110 [1] 110 |
1| 001 1 b v
resen
0[010 ! A/absent bit
Virtual page = 2 is used
as an index into the
page table Incomling
virtua
|0|0|1|0|0|0|0|0|<+J|0|0|0|0|1|0|0| 100

Figure 3-10. The internal operation of the MMU with 16 4-KB pages.

function, the virtual page field in a virtual address can be replaced by a page frame
field, thus forming a physical memory address.

In this chapter, we worry only about virtual memory and not full virtualization.
In other words: no virtual machines yet. We will see in Chap. 7 that each virtual
machine requires its own virtual memory and as a result the page table organiza-
tion becomes much more complicated—involving shadow or nested page tables
and more. Even without such arcane configurations, paging and virtual memory
are fairly sophisticated, as we shall see.

Structure of a Page Table Entry

Let us now turn from the structure of the page tables in the large, to the details
of a single page table entry. The exact layout of an entry in the page table is highly
machine dependent, but the kind of information present is roughly the same from
machine to machine. In Fig.3-11 we present a sample page table entry. The size

200 MEMORY MANAGEMENT CHAP. 3

varies from computer to computer, but 32 bits is a common size. The most impor-
tant field is the Page frame number. After all, the goal of the page mapping is to
output this value. Next to it we have the Present/absent bit. If this bit is 1, the
entry is valid and can be used. If it is 0, the virtual page to which the entry belongs
is not currently in memory. Accessing a page table entry with this bit set to 0
causes a page fault.

Caching
disabled Modified Present/absent

P— /

\

N

Referenced Protection

Page frame number

Figure 3-11. A typical page table entry.

The Protection bits tell what kinds of access are permitted. In the simplest
form, this field contains 1 bit, with O for read/write and 1 for read only. A more
sophisticated arrangement is having 3 bits, one bit each for enabling reading, writ-
ing, and executing the page.

The Modified and Referenced bits keep track of page usage. When a page is
written to, the hardware automatically sets the Modified bit. This bit is of value
when the operating system decides to reclaim a page frame. If the page in it has
been modified (i.e., is “dirty”), it must be written back to the disk. If it has not
been modified (i.e., is “clean”), it can just be abandoned, since the disk copy is
still valid. The bit is sometimes called the dirty bit, since it reflects the page’s
state.

The Referenced bit is set whenever a page is referenced, either for reading or
for writing. Its value is used to help the operating system choose a page to evict
when a page fault occurs. Pages that are not being used are far better candidates
than pages that are, and this bit plays an important role in several of the page re-
placement algorithms that we will study later in this chapter.

Finally, the last bit allows caching to be disabled for the page. This feature is
important for pages that map onto device registers rather than memory. If the oper-
ating system is sitting in a tight loop waiting for some 1/O device to respond to a
command it was just given, it is essential that the hardware keep fetching the word
from the device, and not use an old cached copy. With this bit, caching can be
turned off. Machines that have a separate I/O space and do not use memory-map-
ped I/0O do not need this bit.

Note that the disk address used to hold the page when it is not in memory is
not part of the page table. The reason is simple. The page table holds only that
information the hardware needs to translate a virtual address to a physical address.

SEC. 3.3 VIRTUAL MEMORY 201

Information the operating system needs to handle page faults is kept in software
tables inside the operating system. The hardware does not need it.

Before getting into more implementation issues, it is worth pointing out again
that what virtual memory fundamentally does is create a new abstraction—the ad-
dress space—which is an abstraction of physical memory, just as a process is an
abstraction of the physical processor (CPU). Virtual memory can be implemented
by breaking the virtual address space up into pages, and mapping each one onto
some page frame of physical memory or having it (temporarily) unmapped. Thus
this section is bassically about an abstraction created by the operating system and
how that abstraction is managed.

3.3.3 Speeding Up Paging

We have just seen the basics of virtual memory and paging. It is now time to
go into more detail about possible implementations. In any paging system, two
major issues must be faced:

1. The mapping from virtual address to physical address must be fast.

2. If the virtual address space is large, the page table will be large.

The first point is a consequence of the fact that the virtual-to-physical mapping
must be done on every memory reference. All instructions must ultimately come
from memory and many of them reference operands in memory as well. Conse-
quently, it is necessary to make one, two, or sometimes more page table references
per instruction. If an instruction execution takes, say, 1 nsec, the page table lookup
must be done in under 0.2 nsec to avoid having the mapping become a major bot-
tleneck.

The second point follows from the fact that all modern computers use virtual
addresses of at least 32 bits, with 64 bits becoming the norm for desktops and lap-
tops. With, say, a 4-KB page size, a 32-bit address space has 1 million pages, and a
64-bit address space has more than you want to contemplate. With 1 million pages
in the virtual address space, the page table must have 1 million entries. And
remember that each process needs its own page table (because it has its own virtual
address space).

The need for large, fast page mapping is a very significant constraint on the
way computers are built. The simplest design (at least conceptually) is to have a
single page table consisting of an array of fast hardware registers, with one entry
for each virtual page, indexed by virtual page number, as shown in Fig. 3-10.
When a process is started up, the operating system loads the registers with the
process’ page table, taken from a copy kept in main memory. During process ex-
ecution, no more memory references are needed for the page table. The advantages
of this method are that it is straightforward and requires no memory references dur-
ing mapping. A disadvantage is that it is unbearably expensive if the page table is

202 MEMORY MANAGEMENT CHAP. 3

large; it is just not practical most of the time. Another one is that having to load
the full page table at every context switch would completely kill performance.

At the other extreme, the page table can be entirely in main memory. All the
hardware needs then is a single register that points to the start of the page table.
This design allows the virtual-to-physical map to be changed at a context switch by
reloading one register. Of course, it has the disadvantage of requiring one or more
memory references to read page table entries during the execution of each instruc-
tion, making it very slow.

Translation Lookaside Buffers

Let us now look at widely implemented schemes for speeding up paging and
for handling large virtual address spaces, starting with the former. The starting
point of most optimization techniques is that the page table is in memory. Poten-
tially, this design has an enormous impact on performance. Consider, for example,
a 1-byte instruction that copies one register to another. In the absence of paging,
this instruction makes only one memory reference, to fetch the instruction. With
paging, at least one additional memory reference will be needed, to access the page
table. Since execution speed is generally limited by the rate at which the CPU can
get instructions and data out of the memory, having to make two memory refer-
ences per memory reference reduces performance by half. Under these conditions,
no one would use paging.

Computer designers have known about this problem for years and have come
up with a solution. Their solution is based on the observation that most programs
tend to make a large number of references to a small number of pages, and not the
other way around. Thus only a small fraction of the page table entries are heavily
read; the rest are barely used at all.

The solution that has been devised is to equip computers with a small hardware
device for mapping virtual addresses to physical addresses without going through
the page table. The device, called a TLB (Translation Lookaside Buffer) or
sometimes an associative memory, is illustrated in Fig. 3-12. It is usually inside
the MMU and consists of a small number of entries, eight in this example, but
rarely more than 256. Each entry contains information about one page, including
the virtual page number, a bit that is set when the page is modified, the protection
code (read/write/execute permissions), and the physical page frame in which the
page is located. These fields have a one-to-one correspondence with the fields in
the page table, except for the virtual page number, which is not needed in the page
table. Another bit indicates whether the entry is valid (i.e., in use) or not.

An example that might generate the TLB of Fig. 3-12 is a process in a loop
that spans virtual pages 19, 20, and 21, so that these TLB entries have protection
codes for reading and executing. The main data currently being used (say, an array
being processed) are on pages 129 and 130. Page 140 contains the indices used in
the array calculations. Finally, the stack is on pages 860 and 861.

SEC. 3.3 VIRTUAL MEMORY 203

Valid | Virtual page | Modified | Protection | Page frame
1 140 1 RW 31
1 20 0 R X 38
1 130 1 RW 29
1 129 1 RW 62
1 19 0 R X 50
1 21 0 R X 45
1 860 1 RW 14
1 861 1 RW 75

Figure 3-12. A TLB to speed up paging.

Let us now see how the TLB functions. When a virtual address is presented to
the MMU for translation, the hardware first checks to see if its virtual page number
is present in the TLB by comparing it to all the entries simultaneously (i.e., in par-
allel). Doing so requires special hardware, which all MMUs with TLBs have. If a
valid match is found and the access does not violate the protection bits, the page
frame is taken directly from the TLB, without going to the page table. If the virtu-
al page number is present in the TLB but the instruction is trying to write on a
read-only page, a protection fault is generated.

The interesting case is what happens when the virtual page number is not in
the TLB. The MMU detects the miss and does an ordinary page table lookup. It
then evicts one of the entries from the TLB and replaces it with the page table
entry just looked up. Thus if that page is used again soon, the second time it will
result in a TLB hit rather than a miss. When an entry is purged from the TLB, the
modified bit is copied back into the page table entry in memory. The other values
are already there, except the reference bit. When the TLB is loaded from the page
table, all the fields are taken from memory.

Software TLB Management

Up until now, we have assumed that every machine with paged virtual memory
has page tables recognized by the hardware, plus a TLB. In this design, TLB man-
agement and handling TLB faults are done entirely by the MMU hardware. Traps
to the operating system occur only when a page is not in memory.

In the past, this assumption was true. However, many RISC machines, includ-
ing the SPARC, MIPS, and (the now dead) HP PA, do nearly all of this page man-
agement in software. On these machines, the TLB entries are explicitly loaded by
the operating system. When a TLB miss occurs, instead of the MMU going to the
page tables to find and fetch the needed page reference, it just generates a TLB
fault and tosses the problem into the lap of the operating system. The system must
find the page, remove an entry from the TLB, enter the new one, and restart the

204 MEMORY MANAGEMENT CHAP. 3

instruction that faulted. And, of course, all of this must be done in a handful of in-
structions because TLB misses occur much more frequently than page faults.

Surprisingly enough, if the TLB is moderately large (say, 64 entries) to reduce
the miss rate, software management of the TLB turns out to be acceptably efficient.
The main gain here is a much simpler MMU, which frees up a considerable
amount of area on the CPU chip for caches and other features that can improve
performance. Software TLB management is discussed by Uhlig et al. (1994).

Various strategies were developed long ago to improve performance on ma-
chines that do TLB management in software. One approach attacks both reducing
TLB misses and reducing the cost of a TLB miss when it does occur (Bala et al.,
1994). To reduce TLB misses, sometimes the operating system can use its intu-
ition to figure out which pages are likely to be used next and to preload entries for
them in the TLB. For example, when a client process sends a message to a server
process on the same machine, it is very likely that the server will have to run soon.
Knowing this, while processing the trap to do the send, the system can also check
to see where the server’s code, data, and stack pages are and map them in before
they get a chance to cause TLB faults.

The normal way to process a TLB miss, whether in hardware or in software, is
to go to the page table and perform the indexing operations to locate the page refer-
enced. The problem with doing this search in software is that the pages holding the
page table may not be in the TLB, which will cause additional TLB faults during
the processing. These faults can be reduced by maintaining a large (e.g., 4-KB)
software cache of TLB entries in a fixed location whose page is always kept in the
TLB. By first checking the software cache, the operating system can substantially
reduce TLB misses.

When software TLB management is used, it is essential to understand the dif-
ference between different kinds of misses. A soft miss occurs when the page refer-
enced is not in the TLB, but is in memory. All that is needed here is for the TLB to
be updated. No disk I/O is needed. Typically a soft miss takes 10—20 machine in-
structions to handle and can be completed in a couple of nanoseconds. In contrast,
a hard miss occurs when the page itself is not in memory (and of course, also not
in the TLB). A disk access is required to bring in the page, which can take several
milliseconds, depending on the disk being used. A hard miss is easily a million
times slower than a soft miss. Looking up the mapping in the page table hierarchy
is known as a page table walk.

Actually, it is worse that that. A miss is not just soft or hard. Some misses are
slightly softer (or slightly harder) than other misses. For instance, suppose the
page walk does not find the page in the process’ page table and the program thus
incurs a page fault. There are three possibilities. First, the page may actually be in
memory, but not in this process’ page table. For instance, the page may have been
brought in from disk by another process. In that case, we do not need to access the
disk again, but merely map the page appropriately in the page tables. This is a
pretty soft miss that is known as a minor page fault. Second, a major page fault

SEC. 3.3 VIRTUAL MEMORY 205

occurs if the page needs to be brought in from disk. Third, it is possible that the
program simply accessed an invalid address and no mapping needs to be added in
the TLB at all. In that case, the operating system typically kills the program with a
segmentation fault. Only in this case did the program do something wrong. All
other cases are automatically fixed by the hardware and/or the operating sys-
tem—at the cost of some performance.

3.3.4 Page Tables for Large Memories

TLBs can be used to speed up virtual-to-physical address translation over the
original page-table-in-memory scheme. But that is not the only problem we have to
tackle. Another problem is how to deal with very large virtual address spaces.
Below we will discuss two ways of dealing with them.

Multilevel Page Tables

As a first approach, consider the use of a multilevel page table. A simple ex-
ample is shown in Fig. 3-13. In Fig. 3-13(a) we have a 32-bit virtual address that is
partitioned into a 10-bit PT/ field, a 10-bit P72 field, and a 12-bit Offset field.
Since offsets are 12 bits, pages are 4 KB, and there are a total of 2%° of them.

The secret to the multilevel page table method is to avoid keeping all the page
tables in memory all the time. In particular, those that are not needed should not
be kept around. Suppose, for example, that a process needs 12 megabytes: the bot-
tom 4 megabytes of memory for program text, the next 4 megabytes for data, and
the top 4 megabytes for the stack. In between the top of the data and the bottom of
the stack is a gigantic hole that is not used.

In Fig. 3-13(b) we see how the two-level page table works. On the left we see
the top-level page table, with 1024 entries, corresponding to the 10-bit PT/ field.
When a virtual address is presented to the MMU, it first extracts the P71 field and
uses this value as an index into the top-level page table. Each of these 1024 entries
in the top-level page table represents 4M because the entire 4-gigabyte (i.e., 32-bit)
virtual address space has been chopped into chunks of 4096 bytes.

The entry located by indexing into the top-level page table yields the address
or the page frame number of a second-level page table. Entry O of the top-level
page table points to the page table for the program text, entry 1 points to the page
table for the data, and entry 1023 points to the page table for the stack. The other
(shaded) entries are not used. The P72 field is now used as an index into the selec-
ted second-level page table to find the page frame number for the page itself.

As an example, consider the 32-bit virtual address 0x00403004 (4,206,596
decimal), which is 12,292 bytes into the data. This virtual address corresponds to
PTI =1, PT2 =3, and Offset =4. The MMU first uses P71/ to index into the top-

206 MEMORY MANAGEMENT CHAP. 3

Second-level
page tables
T | Page
——— | table for
1 » [thetop
-1, | 4Mof
-1, | memory
T
T
Top-level
page table
1023
6 —
Bits 10 10 12 5 1>
| PT1 | PT2| Offset | 4 m
3 ——
(a) 2 ——
1 o ——
0 \\ ~—
1023
6 —
5 T
4 —
3 1 To
1, pages
-
0 ~—

(b)

Figure 3-13. (a) A 32-bit address with two page table fields. (b) Two-level page
tables.

level page table and obtain entry 1, which corresponds to addresses 4M to 8M — 1.
It then uses P72 to index into the second-level page table just found and extract
entry 3, which corresponds to addresses 12288 to 16383 within its 4M chunk (i.e.,
absolute addresses 4,206,592 to 4,210,687). This entry contains the page frame
number of the page containing virtual address 0x00403004. If that page is not in
memory, the Present/absent bit in the page table entry will have the value zero,
causing a page fault. If the page is present in memory, the page frame number

SEC. 3.3 VIRTUAL MEMORY 207

taken from the second-level page table is combined with the offset (4) to construct
the physical address. This address is put on the bus and sent to memory.

The interesting thing to note about Fig. 3-13 is that although the address space
contains over a million pages, only four page tables are needed: the top-level table,
and the second-level tables for O to 4M (for the program text), 4M to 8M (for the
data), and the top 4M (for the stack). The Present/absent bits in the remaining
1021 entries of the top-level page table are set to O, forcing a page fault if they are
ever accessed. Should this occur, the operating system will notice that the process
is trying to reference memory that it is not supposed to and will take appropriate
action, such as sending it a signal or killing it. In this example we have chosen
round numbers for the various sizes and have picked PT/ equal to P72, but in ac-
tual practice other values are also possible, of course.

The two-level page table system of Fig. 3-13 can be expanded to three, four, or
more levels. Additional levels give more flexibility. For instance, Intel’s 32 bit
80386 processor (launched in 1985) was able to address up to 4-GB of memory,
using a two-level page table that consisted of a page directory whose entries
pointed to page tables, which, in turn, pointed to the actual 4-KB page frames.
Both the page directory and the page tables each contained 1024 entries, giving a
total of 2'0 x 21 x 212 = 232 addressable bytes, as desired.

Ten years later, the Pentium Pro introduced another level: the page directory
pointer table. In addition, it extended each entry in each level of the page table
hierarchy from 32 bits to 64 bits, so that it could address memory above the 4-GB
boundary. As it had only 4 entries in the page directory pointer table, 512 in each
page directory, and 512 in each page table, the total amount of memory it could ad-
dress was still limited to a maximum of 4 GB. When proper 64-bit support was
added to the x86 family (originally by AMD), the additional level could have been
called the “page directory pointer table pointer” or something equally horri. That
would have been perfectly in line with how chip makers tend to name things. Mer-
cifully, they did not do this. The alternative they cooked up, “page map level 4.’
may not be a terribly catchy name either, but at least it is short and a bit clearer. At
any rate, these processors now use all 512 entries in all tables, yielding an amount
of addressable memory of 2° x2” x2°x2” x2'2 =2 bytes. They could have
added another level, but they probably thought that 256 TB would be sufficient for
a while.

Inverted Page Tables

An alternative to ever-increasing levels in a paging hierarchy is known as
inverted page tables. They were first used by such processors as the PowerPC,
the UltraSPARC, and the Itanium (sometimes referred to as “Itanic,” as it was not
nearly the success Intel had hoped for). In this design, there is one entry per page
frame in real memory, rather than one entry per page of virtual address space. For

208 MEMORY MANAGEMENT CHAP. 3

example, with 64-bit virtual addresses, a 4-KB page size, and 4 GB of RAM, an
inverted page table requires only 1,048,576 entries. The entry keeps track of which
(process, virtual page) is located in the page frame.

Although inverted page tables save lots of space, at least when the virtual ad-
dress space is much larger than the physical memory, they have a serious down-
side: virtual-to-physical translation becomes much harder. When process n refer-
ences virtual page p, the hardware can no longer find the physical page by using p
as an index into the page table. Instead, it must search the entire inverted page table
for an entry (n, p). Furthermore, this search must be done on every memory refer-
ence, not just on page faults. Searching a 256K table on every memory reference is
not the way to make your machine blindingly fast.

The way out of this dilemma is to make use of the TLB. If the TLB can hold
all of the heavily used pages, translation can happen just as fast as with regular
page tables. On a TLB miss, however, the inverted page table has to be searched in
software. One feasible way to accomplish this search is to have a hash table hashed
on the virtual address. All the virtual pages currently in memory that have the same
hash value are chained together, as shown in Fig. 3-14. If the hash table has as
many slots as the machine has physical pages, the average chain will be only one
entry long, greatly speeding up the mapping. Once the page frame number has
been found, the new (virtual, physical) pair is entered into the TLB.

Traditional page
table with an entry
for each of the 252

pages
252 1 ;’
1-GB physical
memory has 218
4-KB page frames Hash table

18 . 18 . —
2181 ——— 2181 | + — ——]

— ~

= . =

— I]

Indexed Indexed / \
by virtual by hash on Virtual Page
page virtual page page frame

Figure 3-14. Comparison of a traditional page table with an inverted page table.

Inverted page tables are common on 64-bit machines because even with a very
large page size, the number of page table entries is gigantic. For example, with
4-MB pages and 64-bit virtual addresses, 2** page table entries are needed. Other
approaches to handling large virtual memories can be found in Talluri et al. (1995).

SEC. 34 PAGE REPLACEMENT ALGORITHMS 209

34 PAGE REPLACEMENT ALGORITHMS

When a page fault occurs, the operating system has to choose a page to evict
(remove from memory) to make room for the incoming page. If the page to be re-
moved has been modified while in memory, it must be rewritten to the disk to bring
the disk copy up to date. If, however, the page has not been changed (e.g., it con-
tains program text), the disk copy is already up to date, so no rewrite is needed.
The page to be read in just overwrites the page being evicted.

While it would be possible to pick a random page to evict at each page fault,
system performance is much better if a page that is not heavily used is chosen. If a
heavily used page is removed, it will probably have to be brought back in quickly,
resulting in extra overhead. Much work has been done on the subject of page re-
placement algorithms, both theoretical and experimental. Below we will describe
some of the most important ones.

It is worth noting that the problem of ““page replacement” occurs in other areas
of computer design as well. For example, most computers have one or more mem-
ory caches consisting of recently used 32-byte or 64-byte memory blocks. When
the cache is full, some block has to be chosen for removal. This problem is pre-
cisely the same as page replacement except on a shorter time scale (it has to be
done in a few nanoseconds, not milliseconds as with page replacement). The rea-
son for the shorter time scale is that cache block misses are satisfied from main
memory, which has no seek time and no rotational latency.

A second example is in a Web server. The server can keep a certain number of
heavily used Web pages in its memory cache. However, when the memory cache is
full and a new page is referenced, a decision has to be made which Web page to
evict. The considerations are similar to pages of virtual memory, except that the
Web pages are never modified in the cache, so there is always a fresh copy “on
disk.” In a virtual memory system, pages in main memory may be either clean or
dirty.

In all the page replacement algorithms to be studied below, a certain issue
arises: when a page is to be evicted from memory, does it have to be one of the
faulting process’ own pages, or can it be a page belonging to another process? In
the former case, we are effectively limiting each process to a fixed number of
pages; in the latter case we are not. Both are possibilities. We will come back to
this point in Sec. 3.5.1.

3.4.1 The Optimal Page Replacement Algorithm

The best possible page replacement algorithm is easy to describe but impossi-
ble to actually implement. It goes like this. At the moment that a page fault oc-
curs, some set of pages is in memory. One of these pages will be referenced on the
very next instruction (the page containing that instruction). Other pages may not

210 MEMORY MANAGEMENT CHAP. 3

be referenced until 10, 100, or perhaps 1000 instructions later. Each page can be
labeled with the number of instructions that will be executed before that page is
first referenced.

The optimal page replacement algorithm says that the page with the highest
label should be removed. If one page will not be used for 8 million instructions
and another page will not be used for 6 million instructions, removing the former
pushes the page fault that will fetch it back as far into the future as possible. Com-
puters, like people, try to put off unpleasant events for as long as they can.

The only problem with this algorithm is that it is unrealizable. At the time of
the page fault, the operating system has no way of knowing when each of the pages
will be referenced next. (We saw a similar situation earlier with the short-
est-job-first scheduling algorithm —how can the system tell which job is shortest?)
Still, by running a program on a simulator and keeping track of all page references,
it is possible to implement optimal page replacement on the second run by using
the page-reference information collected during the first run.

In this way, it is possible to compare the performance of realizable algorithms
with the best possible one. If an operating system achieves a performance of, say,
only 1% worse than the optimal algorithm, effort spent in looking for a better algo-
rithm will yield at most a 1% improvement.

To avoid any possible confusion, it should be made clear that this log of page
references refers only to the one program just measured and then with only one
specific input. The page replacement algorithm derived from it is thus specific to
that one program and input data. Although this method is useful for evaluating
page replacement algorithms, it is of no use in practical systems. Below we will
study algorithms that are useful on real systems.

3.4.2 The Not Recently Used Page Replacement Algorithm

In order to allow the operating system to collect useful page usage statistics,
most computers with virtual memory have two status bits, R and M, associated
with each page. R is set whenever the page is referenced (read or written). M is
set when the page is written to (i.e., modified). The bits are contained in each page
table entry, as shown in Fig. 3-11. It is important to realize that these bits must be
updated on every memory reference, so it is essential that they be set by the hard-
ware. Once a bit has been set to 1, it stays 1 until the operating system resets it.

If the hardware does not have these bits, they can be simulated using the oper-
ating system’s page fault and clock interrupt mechanisms. When a process is start-
ed up, all of its page table entries are marked as not in memory. As soon as any
page is referenced, a page fault will occur. The operating system then sets the R bit
(in its internal tables), changes the page table entry to point to the correct page,
with mode READ ONLY, and restarts the instruction. If the page is subsequently
modified, another page fault will occur, allowing the operating system to set the M
bit and change the page’s mode to READ/WRITE.

SEC. 34 PAGE REPLACEMENT ALGORITHMS 211

The R and M bits can be used to build a simple paging algorithm as follows.
When a process is started up, both page bits for all its pages are set to 0 by the op-
erating system. Periodically (e.g., on each clock interrupt), the R bit is cleared, to
distinguish pages that have not been referenced recently from those that have been.

When a page fault occurs, the operating system inspects all the pages and
divides them into four categories based on the current values of their R and M bits:

Class 0: not referenced, not modified.
Class 1: not referenced, modified.
Class 2: referenced, not modified.
Class 3: referenced, modified.

Although class 1 pages seem, at first glance, impossible, they occur when a class 3
page has its R bit cleared by a clock interrupt. Clock interrupts do not clear the M
bit because this information is needed to know whether the page has to be rewritten
to disk or not. Clearing R but not M leads to a class 1 page.

The NRU (Not Recently Used) algorithm removes a page at random from the
lowest-numbered nonempty class. Implicit in this algorithm is the idea that it is
better to remove a modified page that has not been referenced in at least one clock
tick (typically about 20 msec) than a clean page that is in heavy use. The main
attraction of NRU is that it is easy to understand, moderately efficient to imple-
ment, and gives a performance that, while certainly not optimal, may be adequate.

3.4.3 The First-In, First-Out (FIFO) Page Replacement Algorithm

Another low-overhead paging algorithm is the FIFO (First-In, First-Out) al-
gorithm. To illustrate how this works, consider a supermarket that has enough
shelves to display exactly k different products. One day, some company introduces
a new convenience food —instant, freeze-dried, organic yogurt that can be reconsti-
tuted in a microwave oven. It is an immediate success, so our finite supermarket
has to get rid of one old product in order to stock it.

One possibility is to find the product that the supermarket has been stocking
the longest (i.e., something it began selling 120 years ago) and get rid of it on the
grounds that no one is interested any more. In effect, the supermarket maintains a
linked list of all the products it currently sells in the order they were introduced.
The new one goes on the back of the list; the one at the front of the list is dropped.

As a page replacement algorithm, the same idea is applicable. The operating
system maintains a list of all pages currently in memory, with the most recent arri-
val at the tail and the least recent arrival at the head. On a page fault, the page at
the head is removed and the new page added to the tail of the list. When applied to
stores, FIFO might remove mustache wax, but it might also remove flour, salt, or
butter. When applied to computers the same problem arises: the oldest page may
still be useful. For this reason, FIFO in its pure form is rarely used.

212 MEMORY MANAGEMENT CHAP. 3

3.4.4 The Second-Chance Page Replacement Algorithm

A simple modification to FIFO that avoids the problem of throwing out a heav-
ily used page is to inspect the R bit of the oldest page. If it is O, the page is both
old and unused, so it is replaced immediately. If the R bit is 1, the bit is cleared,
the page is put onto the end of the list of pages, and its load time is updated as
though it had just arrived in memory. Then the search continues.

The operation of this algorithm, called second chance, is shown in Fig. 3-15.
In Fig. 3-15(a) we see pages A through H kept on a linked list and sorted by the
time they arrived in memory.

Page loaded first
\ 0 3 7 8 12 14 15 18
A c E F G H

Most recently

A is treated like a

3 14 15 / newly loaded page

7 8 12 18 20
e o o]
(b)
Figure 3-15. Operation of second chance. (a) Pages sorted in FIFO order.
(b) Page list if a page fault occurs at time 20 and A has its R bit set. The numbers
above the pages are their load times.

Suppose that a page fault occurs at time 20. The oldest page is A, which arriv-
ed at time 0, when the process started. If A has the R bit cleared, it is evicted from
memory, either by being written to the disk (if it is dirty), or just abandoned (if it is
clean). On the other hand, if the R bit is set, A is put onto the end of the list and its
“load time” is reset to the current time (20). The R bit is also cleared. The search
for a suitable page continues with B.

What second chance is looking for is an old page that has not been referenced
in the most recent clock interval. If all the pages have been referenced, second
chance degenerates into pure FIFO. Specifically, imagine that all the pages in
Fig. 3-15(a) have their R bits set. One by one, the operating system moves the
pages to the end of the list, clearing the R bit each time it appends a page to the end
of the list. Eventually, it comes back to page A, which now has its R bit cleared. At
this point A is evicted. Thus the algorithm always terminates.

3.4.5 The Clock Page Replacement Algorithm

Although second chance is a reasonable algorithm, it is unnecessarily inef-
ficient because it is constantly moving pages around on its list. A better approach
is to keep all the page frames on a circular list in the form of a clock, as shown in
Fig. 3-16. The hand points to the oldest page.

SEC. 34 PAGE REPLACEMENT ALGORITHMS 213

When a page fault occurs,
the page the hand is
IE pointing to is inspected.

The action taken depends
on the R bit:
R = 0: Evict the page

|I| IE R = 1: Clear R and advance hand

Figure 3-16. The clock page replacement algorithm.

When a page fault occurs, the page being pointed to by the hand is inspected.
If its R bit is O, the page is evicted, the new page is inserted into the clock in its
place, and the hand is advanced one position. If R is 1, it is cleared and the hand is
advanced to the next page. This process is repeated until a page is found with
R =0. Not surprisingly, this algorithm is called clock.

3.4.6 The Least Recently Used (LRU) Page Replacement Algorithm

A good approximation to the optimal algorithm is based on the observation
that pages that have been heavily used in the last few instructions will probably be
heavily used again soon. Conversely, pages that have not been used for ages will
probably remain unused for a long time. This idea suggests a realizable algorithm:
when a page fault occurs, throw out the page that has been unused for the longest
time. This strategy is called LRU (Least Recently Used) paging.

Although LRU is theoretically realizable, it is not cheap by a long shot. To
fully implement LRU, it is necessary to maintain a linked list of all pages in mem-
ory, with the most recently used page at the front and the least recently used page
at the rear. The difficulty is that the list must be updated on every memory refer-
ence. Finding a page in the list, deleting it, and then moving it to the front is a very
time consuming operation, even in hardware (assuming that such hardware could
be built).

However, there are other ways to implement LRU with special hardware. Let
us consider the simplest way first. This method requires equipping the hardware
with a 64-bit counter, C, that is automatically incremented after each instruction.
Furthermore, each page table entry must also have a field large enough to contain
the counter. After each memory reference, the current value of C is stored in the

214 MEMORY MANAGEMENT CHAP. 3

page table entry for the page just referenced. When a page fault occurs, the operat-
ing system examines all the counters in the page table to find the lowest one. That
page is the least recently used.

3.4.7 Simulating LRU in Software

Although the previous LRU algorithm is (in principle) realizable, few, if any,
machines have the required hardware. Instead, a solution that can be implemented
in software is needed. One possibility is called the NFU (Not Frequently Used)
algorithm. It requires a software counter associated with each page, initially zero.
At each clock interrupt, the operating system scans all the pages in memory. For
each page, the R bit, which is O or 1, is added to the counter. The counters roughly
keep track of how often each page has been referenced. When a page fault occurs,
the page with the lowest counter is chosen for replacement.

The main problem with NFU is that it is like an elephant: it never forgets any-
thing. For example, in a multipass compiler, pages that were heavily used during
pass 1 may still have a high count well into later passes. In fact, if pass 1 happens
to have the longest execution time of all the passes, the pages containing the code
for subsequent passes may always have lower counts than the pass-1 pages. Conse-
quently, the operating system will remove useful pages instead of pages no longer
in use.

Fortunately, a small modification to NFU makes it able to simulate LRU quite
well. The modification has two parts. First, the counters are each shifted right 1 bit
before the R bit is added in. Second, the R bit is added to the leftmost rather than
the rightmost bit.

Figure 3-17 illustrates how the modified algorithm, known as aging, works.
Suppose that after the first clock tick the R bits for pages O to 5 have the values 1,
0,1,0, 1, and 1, respectively (page 0 is 1, page 1 is 0, page 2 is 1, etc.). In other
words, between tick 0 and tick 1, pages 0, 2, 4, and 5 were referenced, setting their
R bits to 1, while the other ones remained 0. After the six corresponding counters
have been shifted and the R bit inserted at the left, they have the values shown in
Fig. 3-17(a). The four remaining columns show the six counters after the next four
clock ticks.

When a page fault occurs, the page whose counter is the lowest is removed. It
is clear that a page that has not been referenced for, say, four clock ticks will have
four leading zeros in its counter and thus will have a lower value than a counter
that has not been referenced for three clock ticks.

This algorithm differs from LRU in two important ways. Consider pages 3 and
5 in Fig. 3-17(e). Neither has been referenced for two clock ticks; both were refer-
enced in the tick prior to that. According to LRU, if a page must be replaced, we
should choose one of these two. The trouble is, we do not know which of them was
referenced last in the interval between tick 1 and tick 2. By recording only 1 bit
per time interval, we have now lost the ability to distinguish references early in the

SEC. 34 PAGE REPLACEMENT ALGORITHMS 215

R bits for R bits for R bits for R bits for R bits for
pages 0-5, pages 0-5, pages 0-5, pages 0-5, pages 0-5,
clock tick 0 clock tick 1 clock tick 2 clock tick 3 clock tick 4

Lol fofrfa] i [r]rlofoftfo] : [1]t]o[1]o]r] : [1]o]o]o[t]o] | [o[1]t]o]o]o]

| | | |
i i i i
| | | |
i i i i
o 10000000	i{ 11000000	i
I I I I		
1	00000000	i
2 | 10000000 | % | 01000000 | % | 00100000 | % | 00010000 | % | 10001000 |
I I I I
3 | 00000000 | % | 00000000 | % | 10000000 | % | 01000000 | % | 00100000 |
I I I I
4 | 10000000 | % | 11000000 | % | 01100000 | % | 10110000 | % | 01011000 |
5| 10000000 | 1 | ot1000000 | 1 | 10100000 | 1 | oto10000 | 1 | oo101000 |

(@) (b) (© (d) (€)

Figure 3-17. The aging algorithm simulates LRU in software. Shown are six
pages for five clock ticks. The five clock ticks are represented by (a) to (e).

clock interval from those occurring later. All we can do is remove page 3, because
page 5 was also referenced two ticks earlier and page 3 was not.

The second difference between LRU and aging is that in aging the counters
have a finite number of bits (8 bits in this example), which limits its past horizon.
Suppose that two pages each have a counter value of 0. All we can do is pick one
of them at random. In reality, it may well be that one of the pages was last refer-
enced nine ticks ago and the other was last referenced 1000 ticks ago. We have no
way of seeing that. In practice, however, 8 bits is generally enough if a clock tick
is around 20 msec. If a page has not been referenced in 160 msec, it probably is
not that important.

3.4.8 The Working Set Page Replacement Algorithm

In the purest form of paging, processes are started up with none of their pages
in memory. As soon as the CPU tries to fetch the first instruction, it gets a page
fault, causing the operating system to bring in the page containing the first instruc-
tion. Other page faults for global variables and the stack usually follow quickly.
After a while, the process has most of the pages it needs and settles down to run
with relatively few page faults. This strategy is called demand paging because
pages are loaded only on demand, not in advance.

Of course, it is easy enough to write a test program that systematically reads all
the pages in a large address space, causing so many page faults that there is not

216 MEMORY MANAGEMENT CHAP. 3

enough memory to hold them all. Fortunately, most processes do not work this
way. They exhibit a locality of reference, meaning that during any phase of ex-
ecution, the process references only a relatively small fraction of its pages. Each
pass of a multipass compiler, for example, references only a fraction of all the
pages, and a different fraction at that.

The set of pages that a process is currently using is its working set (Denning,
1968a; Denning, 1980). If the entire working set is in memory, the process will
run without causing many faults until it moves into another execution phase (e.g.,
the next pass of the compiler). If the available memory is too small to hold the en-
tire working set, the process will cause many page faults and run slowly, since ex-
ecuting an instruction takes a few nanoseconds and reading in a page from the disk
typically takes 10 msec At a rate of one or two instructions per 10 msec, it will
take ages to finish. A program causing page faults every few instructions is said to
be thrashing (Denning, 1968b).

In a multiprogramming system, processes are often moved to disk (i.e., all their
pages are removed from memory) to let others have a turn at the CPU. The ques-
tion arises of what to do when a process is brought back in again. Technically,
nothing need be done. The process will just cause page faults until its working set
has been loaded. The problem is that having numerous page faults every time a
process is loaded is slow, and it also wastes considerable CPU time, since it takes
the operating system a few milliseconds of CPU time to process a page fault.

Therefore, many paging systems try to keep track of each process’ working set
and make sure that it is in memory before letting the process run. This approach is
called the working set model (Denning, 1970). It is designed to greatly reduce the
page fault rate. Loading the pages before letting processes run is also called
prepaging. Note that the working set changes over time.

It has long been known that programs rarely reference their address space uni-
formly, but that the references tend to cluster on a small number of pages. A mem-
ory reference may fetch an instruction or data, or it may store data. At any instant
of time, ¢, there exists a set consisting of all the pages used by the & most recent
memory references. This set, w(k,), is the working set. Because the k = 1 most
recent references must have used all the pages used by the & > 1 most recent refer-
ences, and possibly others, w(k, t) is a monotonically nondecreasing function of k.
The limit of w(k, t) as k becomes large is finite because a program cannot refer-
ence more pages than its address space contains, and few programs will use every
single page. Figure 3-18 depicts the size of the working set as a function of k.

The fact that most programs randomly access a small number of pages, but that
this set changes slowly in time explains the initial rapid rise of the curve and then
the much slower rise for large k. For example, a program that is executing a loop
occupying two pages using data on four pages may reference all six pages every
1000 instructions, but the most recent reference to some other page may be a mil-
lion instructions earlier, during the initialization phase. Due to this asymptotic be-
havior, the contents of the working set is not sensitive to the value of k chosen. To

SEC. 34 PAGE REPLACEMENT ALGORITHMS 217

w(k,t)

k

Figure 3-18. The working set is the set of pages used by the k most recent mem-
ory references. The function w(k,) is the size of the working set at time 7.

put it differently, there exists a wide range of k values for which the working set is
unchanged. Because the working set varies slowly with time, it is possible to make
a reasonable guess as to which pages will be needed when the program is restarted
on the basis of its working set when it was last stopped. Prepaging consists of load-
ing these pages before resuming the process.

To implement the working set model, it is necessary for the operating system
to keep track of which pages are in the working set. Having this information also
immediately leads to a possible page replacement algorithm: when a page fault oc-
curs, find a page not in the working set and evict it. To implement such an algo-
rithm, we need a precise way of determining which pages are in the working set.
By definition, the working set is the set of pages used in the k most recent memory
references (some authors use the k& most recent page references, but the choice is
arbitrary). To implement any working set algorithm, some value of k must be cho-
sen in advance. Then, after every memory reference, the set of pages used by the
most recent k memory references is uniquely determined.

Of course, having an operational definition of the working set does not mean
that there is an efficient way to compute it during program execution. One could
imagine a shift register of length k, with every memory reference shifting the regis-
ter left one position and inserting the most recently referenced page number on the
right. The set of all k page numbers in the shift register would be the working set.
In theory, at a page fault, the contents of the shift register could be read out and
sorted. Duplicate pages could then be removed. The result would be the working
set. However, maintaining the shift register and processing it at a page fault would
both be prohibitively expensive, so this technique is never used.

Instead, various approximations are used. One commonly used approximation
is to drop the idea of counting back & memory references and use execution time
instead. For example, instead of defining the working set as those pages used dur-
ing the previous 10 million memory references, we can define it as the set of pages

218 MEMORY MANAGEMENT CHAP. 3

used during the past 100 msec of execution time. In practice, such a definition is
just as good and much easier to work with. Note that for each process, only its
own execution time counts. Thus if a process starts running at time 7" and has had
40 msec of CPU time at real time 7" + 100 msec, for working set purposes its time
is 40 msec. The amount of CPU time a process has actually used since it started is
often called its current virtual time. With this approximation, the working set of
a process is the set of pages it has referenced during the past 7 seconds of virtual
time.

Now let us look at a page replacement algorithm based on the working set. The
basic idea is to find a page that is not in the working set and evict it. In Fig. 3-19
we see a portion of a page table for some machine. Because only pages located in
memory are considered as candidates for eviction, pages that are absent from
memory are ignored by this algorithm. Each entry contains (at least) two key items
of information: the (approximate) time the page was last used and the R (Refer-
enced) bit. An empty white rectangle symbolizes the other fields not needed for
this algorithm, such as the page frame number, the protection bits, and the M
(Modified) bit.

2204 Current virtual time

Information about { / R (Referenced) bit
one page 2084 [14

2003 |1
Time of last use ———>1980 [1 Scan all pages examining R bit:

| if (R==1)

Page referenced __| 1213 0 set time of last use to current virtual time
during this tick

2014 |1 if (R==0and age > 1)

2020 |1 remove this page

2032 |1 if (R==0andage<1)

gage ntoht_ retfe:;enced —1 remember the smallest time
uring this tic 620 10
Page table

Figure 3-19. The working set algorithm.

The algorithm works as follows. The hardware is assumed to set the R and M
bits, as discussed earlier. Similarly, a periodic clock interrupt is assumed to cause
software to run that clears the Referenced bit on every clock tick. On every page
fault, the page table is scanned to look for a suitable page to evict.

As each entry is processed, the R bit is examined. If it is 1, the current virtual
time is written into the Time of last use field in the page table, indicating that the

SEC. 34 PAGE REPLACEMENT ALGORITHMS 219

page was in use at the time the fault occurred. Since the page has been referenced
during the current clock tick, it is clearly in the working set and is not a candidate
for removal (7 is assumed to span multiple clock ticks).

If R is O, the page has not been referenced during the current clock tick and
may be a candidate for removal. To see whether or not it should be removed, its
age (the current virtual time minus its Time of last use) is computed and compared
to 7. If the age is greater than 7, the page is no longer in the working set and the
new page replaces it. The scan continues updating the remaining entries.

However, if R is O but the age is less than or equal to 7, the page is still in the
working set. The page is temporarily spared, but the page with the greatest age
(smallest value of Time of last use) is noted. If the entire table is scanned without
finding a candidate to evict, that means that all pages are in the working set. In
that case, if one or more pages with R = 0 were found, the one with the greatest age
is evicted. In the worst case, all pages have been referenced during the current
clock tick (and thus all have R = 1), so one is chosen at random for removal, prefer-
ably a clean page, if one exists.

3.49 The WSClock Page Replacement Algorithm

The basic working set algorithm is cumbersome, since the entire page table has
to be scanned at each page fault until a suitable candidate is located. An improved
algorithm, which is based on the clock algorithm but also uses the working set
information, is called WSClock (Carr and Hennessey, 1981). Due to its simplicity
of implementation and good performance, it is widely used in practice.

The data structure needed is a circular list of page frames, as in the clock algo-
rithm, and as shown in Fig. 3-20(a). Initially, this list is empty. When the first page
is loaded, it is added to the list. As more pages are added, they go into the list to
form a ring. Each entry contains the Time of last use field from the basic working
set algorithm, as well as the R bit (shown) and the M bit (not shown).

As with the clock algorithm, at each page fault the page pointed to by the hand
is examined first. If the R bit is set to 1, the page has been used during the current
tick so it is not an ideal candidate to remove. The R bit is then set to 0, the hand ad-
vanced to the next page, and the algorithm repeated for that page. The state after
this sequence of events is shown in Fig. 3-20(b).

Now consider what happens if the page pointed to has R = 0, as shown in
Fig. 3-20(c). If the age is greater than 7 and the page is clean, it is not in the work-
ing set and a valid copy exists on the disk. The page frame is simply claimed and
the new page put there, as shown in Fig. 3-20(d). On the other hand, if the page is
dirty, it cannot be claimed immediately since no valid copy is present on disk. To
avoid a process switch, the write to disk is scheduled, but the hand is advanced and
the algorithm continues with the next page. After all, there might be an old, clean
page further down the line that can be used immediately.

220

MEMORY MANAGEMENT

2204 | Current virtual time

R bit

()

1620]0
2084[1 2032[1
2003]1 \ 2020][1
1980 [1 20141
1213]0 T
Time of
last use
()
1620]0
2084[1 2032[1
2003]1 2020]1
1980 [1 2014]J0
1213]0

CHAP. 3
1620]0
20841 2032][1
2003][1 2020]1
1980 [1 2014]0
1213]0
(b)
1620]0
2084]1 2032[1
2003]1 2020]1
1980 [1 2014]0
22041 |
New page

(d)

Figure 3-20. Operation of the WSClock algorithm. (a) and (b) give an example
of what happens when R = 1. (c) and (d) give an example of R = 0.

In principle, all pages might be scheduled for disk I/O on one cycle around the
clock. To reduce disk traffic, a limit might be set, allowing a maximum of n pages
to be written back. Once this limit has been reached, no new writes would be

scheduled.

What happens if the hand comes all the way around and back to its starting
point? There are two cases we have to consider:

SEC. 34 PAGE REPLACEMENT ALGORITHMS 221

1. At least one write has been scheduled.
2. No writes have been scheduled.

In the first case, the hand just keeps moving, looking for a clean page. Since one or
more writes have been scheduled, eventually some write will complete and its page
will be marked as clean. The first clean page encountered is evicted. This page is
not necessarily the first write scheduled because the disk driver may reorder writes
in order to optimize disk performance.

In the second case, all pages are in the working set, otherwise at least one write
would have been scheduled. Lacking additional information, the simplest thing to
do is claim any clean page and use it. The location of a clean page could be kept
track of during the sweep. If no clean pages exist, then the current page is chosen
as the victim and written back to disk.

3.4.10 Summary of Page Replacement Algorithms

We have now looked at a variety of page replacement algorithms. Now we
will briefly summarize them. The list of algorithms discussed is given in Fig. 3-21.

Algorithm Comment
Optimal Not implementable, but useful as a benchmark
NRU (Not Recently Used) Very crude approximation of LRU
FIFO (First-In, First-Out) Might throw out important pages
Second chance Big improvement over FIFO
Clock Realistic

LRU (Least Recently Used) | Excellent, but difficult to implement exactly
NFU (Not Frequently Used) | Fairly crude approximation to LRU

Aging Efficient algorithm that approximates LRU well
Working set Somewhat expensive to implement
WSClock Good efficient algorithm

Figure 3-21. Page replacement algorithms discussed in the text.

The optimal algorithm evicts the page that will be referenced furthest in the fu-
ture. Unfortunately, there is no way to determine which page this is, so in practice
this algorithm cannot be used. It is useful as a benchmark against which other al-
gorithms can be measured, however.

The NRU algorithm divides pages into four classes depending on the state of
the R and M bits. A random page from the lowest-numbered class is chosen. This
algorithm is easy to implement, but it is very crude. Better ones exist.

FIFO keeps track of the order in which pages were loaded into memory by
keeping them in a linked list. Removing the oldest page then becomes trivial, but
that page might still be in use, so FIFO is a bad choice.

222 MEMORY MANAGEMENT CHAP. 3

Second chance is a modification to FIFO that checks if a page is in use before
removing it. If it is, the page is spared. This modification greatly improves the
performance. Clock is simply a different implementation of second chance. It has
the same performance properties, but takes a little less time to execute the algo-
rithm.

LRU is an excellent algorithm, but it cannot be implemented without special
hardware. If this hardware is not available, it cannot be used. NFU is a crude at-
tempt to approximate LRU. It is not very good. However, aging is a much better
approximation to LRU and can be implemented efficiently. It is a good choice.

The last two algorithms use the working set. The working set algorithm gives
reasonable performance, but it is somewhat expensive to implement. WSClock is a
variant that not only gives good performance but is also efficient to implement.

All in all, the two best algorithms are aging and WSClock. They are based on
LRU and the working set, respectively. Both give good paging performance and
can be implemented efficiently. A few other good algorithms exist, but these two
are probably the most important in practice.

3.5 DESIGN ISSUES FOR PAGING SYSTEMS

In the previous sections we have explained how paging works and have given a
few of the basic page replacement algorithms. But knowing the bare mechanics is
not enough. To design a system and make it work well you have to know a lot
more. It is like the difference between knowing how to move the rook, knight,
bishop, and other pieces in chess, and being a good player. In the following sec-
tions, we will look at other issues that operating system designers must consider
carefully in order to get good performance from a paging system.

3.5.1 Local versus Global Allocation Policies

In the preceding sections we have discussed several algorithms for choosing a
page to replace when a fault occurs. A major issue associated with this choice
(which we have carefully swept under the rug until now) is how memory should be
allocated among the competing runnable processes.

Take a look at Fig. 3-22(a). In this figure, three processes, A, B, and C, make
up the set of runnable processes. Suppose A gets a page fault. Should the page re-
placement algorithm try to find the least recently used page considering only the
six pages currently allocated to A, or should it consider all the pages in memory?
If it looks only at A’s pages, the page with the lowest age value is A5, so we get the
situation of Fig. 3-22(b).

On the other hand, if the page with the lowest age value is removed without
regard to whose page it is, page B3 will be chosen and we will get the situation of
Fig. 3-22(c). The algorithm of Fig. 3-22(b) is said to be a local page replacement

SEC. 3.5 DESIGN ISSUES FOR PAGING SYSTEMS 223

Age
A0 10 A0 AQ
A1 7 A1 A1l
A2 5 A2 A2
A3 4 A3 A3
A4 6 A4 A4
A5 3 A5
BO 9 BO BO
B1 4 B1 B1
B2 6 B2 B2
B3 2 B3
B4 5 B4 B4
B5 6 B5 B5
B6 12 B6 B6
C1 3 CA C1
C2 5 C2 Cc2
C3 6 C3 C3
(a) (b) (©

Figure 3-22. Local versus global page replacement. (a) Original configuration.
(b) Local page replacement. (c) Global page replacement.

algorithm, whereas that of Fig. 3-22(c) is said to be a global algorithm. Local algo-
rithms effectively correspond to allocating every process a fixed fraction of the
memory. Global algorithms dynamically allocate page frames among the runnable
processes. Thus the number of page frames assigned to each process varies in time.

In general, global algorithms work better, especially when the working set size
can vary a lot over the lifetime of a process. If a local algorithm is used and the
working set grows, thrashing will result, even if there are a sufficient number of
free page frames. If the working set shrinks, local algorithms waste memory. If a
global algorithm is used, the system must continually decide how many page
frames to assign to each process. One way is to monitor the working set size as in-
dicated by the aging bits, but this approach does not necessarily prevent thrashing.
The working set may change size in milliseconds, whereas the aging bits are a very
crude measure spread over a number of clock ticks.

Another approach is to have an algorithm for allocating page frames to proc-
esses. One way is to periodically determine the number of running processes and
allocate each process an equal share. Thus with 12,416 available (i.e., nonoperating
system) page frames and 10 processes, each process gets 1241 frames. The remain-
ing six go into a pool to be used when page faults occur.

Although this method may seem fair, it makes little sense to give equal shares
of the memory to a 10-KB process and a 300-KB process. Instead, pages can be al-
located in proportion to each process’ total size, with a 300-KB process getting 30
times the allotment of a 10-KB process. It is probably wise to give each process
some minimum number, so that it can run no matter how small it is. On some

224 MEMORY MANAGEMENT CHAP. 3

machines, for example, a single two-operand instruction may need as many as six
pages because the instruction itself, the source operand, and the destination oper-
and may all straddle page boundaries. With an allocation of only five pages, pro-
grams containing such instructions cannot execute at all.

If a global algorithm is used, it may be possible to start each process up with
some number of pages proportional to the process’ size, but the allocation has to be
updated dynamically as the processes run. One way to manage the allocation is to
use the PFF (Page Fault Frequency) algorithm. It tells when to increase or
decrease a process’ page allocation but says nothing about which page to replace
on a fault. It just controls the size of the allocation set.

For a large class of page replacement algorithms, including LRU, it is known
that the fault rate decreases as more pages are assigned, as we discussed above.
This is the assumption behind PFF. This property is illustrated in Fig. 3-23.

Page faults/sec

Number of page frames assigned

Figure 3-23. Page fault rate as a function of the number of page frames assigned.

Measuring the page fault rate is straightforward: just count the number of
faults per second, possibly taking a running mean over past seconds as well. One
easy way to do this is to add the number of page faults during the immediately pre-
ceding second to the current running mean and divide by two. The dashed line
marked A corresponds to a page fault rate that is unacceptably high, so the faulting
process is given more page frames to reduce the fault rate. The dashed line marked
B corresponds to a page fault rate so low that we can assume the process has too
much memory. In this case, page frames may be taken away from it. Thus, PFF
tries to keep the paging rate for each process within acceptable bounds.

It is important to note that some page replacement algorithms can work with
either a local replacement policy or a global one. For example, FIFO can replace
the oldest page in all of memory (global algorithm) or the oldest page owned by
the current process (local algorithm). Similarly, LRU or some approximation to it
can replace the least recently used page in all of memory (global algorithm) or the
least recently used page owned by the current process (local algorithm). The
choice of local versus global is independent of the algorithm in some cases.

SEC. 3.5 DESIGN ISSUES FOR PAGING SYSTEMS 225

On the other hand, for other page replacement algorithms, only a local strategy
makes sense. In particular, the working set and WSClock algorithms refer to some
specific process and must be applied in that context. There really is no working set
for the machine as a whole, and trying to use the union of all the working sets
would lose the locality property and not work well.

3.5.2 Load Control

Even with the best page replacement algorithm and optimal global allocation
of page frames to processes, it can happen that the system thrashes. In fact, when-
ever the combined working sets of all processes exceed the capacity of memory,
thrashing can be expected. One symptom of this situation is that the PFF algorithm
indicates that some processes need more memory but no processes need less mem-
ory. In this case, there is no way to give more memory to those processes needing
it without hurting some other processes. The only real solution is to temporarily
get rid of some processes.

A good way to reduce the number of processes competing for memory is to
swap some of them to the disk and free up all the pages they are holding. For ex-
ample, one process can be swapped to disk and its page frames divided up among
other processes that are thrashing. If the thrashing stops, the system can run for a
while this way. If it does not stop, another process has to be swapped out, and so
on, until the thrashing stops. Thus even with paging, swapping may still be needed,
only now swapping is used to reduce potential demand for memory, rather than to
reclaim pages.

Swapping processes out to relieve the load on memory is reminiscent of two-
level scheduling, in which some processes are put on disk and a short-term sched-
uler is used to schedule the remaining processes. Clearly, the two ideas can be
combined, with just enough processes swapped out to make the page-fault rate ac-
ceptable. Periodically, some processes are brought in from disk and other ones are
swapped out.

However, another factor to consider is the degree of multiprogramming. When
the number of processes in main memory is too low, the CPU may be idle for sub-
stantial periods of time. This consideration argues for considering not only process
size and paging rate when deciding which process to swap out, but also its charac-
teristics, such as whether it is CPU bound or I/O bound, and what characteristics
the remaining processes have.

3.5.3 Page Size

The page size is a parameter that can be chosen by the operating system. Even
if the hardware has been designed with, for example, 4096-byte pages, the operat-
ing system can easily regard page pairs O and 1, 2 and 3, 4 and 5, and so on, as
8-KB pages by always allocating two consecutive 8192-byte page frames for them.

226 MEMORY MANAGEMENT CHAP. 3

Determining the best page size requires balancing several competing factors.
As a result, there is no overall optimum. To start with, two factors argue for a
small page size. A randomly chosen text, data, or stack segment will not fill an
integral number of pages. On the average, half of the final page will be empty.
The extra space in that page is wasted. This wastage is called internal fragmenta-
tion. With n segments in memory and a page size of p bytes, np/2 bytes will be
wasted on internal fragmentation. This reasoning argues for a small page size.

Another argument for a small page size becomes apparent if we think about a
program consisting of eight sequential phases of 4 KB each. With a 32-KB page
size, the program must be allocated 32 KB all the time. With a 16-KB page size, it
needs only 16 KB. With a page size of 4 KB or smaller, it requires only 4 KB at
any instant. In general, a large page size will cause more wasted space to be in
memory than a small page size.

On the other hand, small pages mean that programs will need many pages, and
thus a large page table. A 32-KB program needs only four 8-KB pages, but 64
512-byte pages. Transfers to and from the disk are generally a page at a time, with
most of the time being for the seek and rotational delay, so that transferring a small
page takes almost as much time as transferring a large page. It might take 64 x 10
msec to load 64 512-byte pages, but only 4 X 12 msec to load four 8-KB pages.

Also, small pages use up much valuable space in the TLB. Say your program
uses 1 MB of memory with a working set of 64 KB. With 4-KB pages, the pro-
gram would occupy at least 16 entries in the TLB. With 2-MB pages, a single TLB
entry would be sufficient (in theory, it may be that you want to separate data and
instructions). As TLB entries are scarce, and critical for performance, it pays to use
large pages wherever possible. To balance all these trade-offs, operating systems
sometimes use different page sizes for different parts of the system. For instance,
large pages for the kernel and smaller ones for user processes.

On some machines, the page table must be loaded (by the operating system)
into hardware registers every time the CPU switches from one process to another.
On these machines, having a small page size means that the time required to load
the page registers gets longer as the page size gets smaller. Furthermore, the space
occupied by the page table increases as the page size decreases.

This last point can be analyzed mathematically. Let the average process size be
s bytes and the page size be p bytes. Furthermore, assume that each page entry re-
quires e bytes. The approximate number of pages needed per process is then s/p,
occupying se/p bytes of page table space. The wasted memory in the last page of
the process due to internal fragmentation is p/2. Thus, the total overhead due to
the page table and the internal fragmentation loss is given by the sum of these two
terms:

overhead = se/p + p/2

The first term (page table size) is large when the page size is small. The second
term (internal fragmentation) is large when the page size is large. The optimum

SEC. 3.5 DESIGN ISSUES FOR PAGING SYSTEMS 227

must lie somewhere in between. By taking the first derivative with respect to p and
equating it to zero, we get the equation
—se/p*+1/2=0

From this equation we can derive a formula that gives the optimum page size (con-
sidering only memory wasted in fragmentation and page table size). The result is:

p =\2se

For s = IMB and e = 8 bytes per page table entry, the optimum page size is 4 KB.
Commercially available computers have used page sizes ranging from 512 bytes to
64 KB. A typical value used to be 1 KB, but nowadays 4 KB is more common.

3.5.4 Separate Instruction and Data Spaces

Most computers have a single address space that holds both programs and data,
as shown in Fig. 3-24(a). If this address space is large enough, everything works
fine. However, if it’s too small, it forces programmers to stand on their heads to fit
everything into the address space.

Single address

space | space D space
232 232
} Unused page
Data
Data
RSN RN
Program Program
0 0
(@) (b)

Figure 3-24. (a) One address space. (b) Separate I and D spaces.

One solution, pioneered on the (16-bit) PDP-11, is to have separate address
spaces for instructions (program text) and data, called I-space and D-space, re-
spectively, as illustrated in Fig. 3-24(b). Each address space runs from 0 to some
maximum, typically 2'¢ — 1 or 2°2 — 1. The linker must know when separate I-
and D-spaces are being used, because when they are, the data are relocated to vir-
tual address O instead of starting after the program.

In a computer with this kind of design, both address spaces can be paged, inde-
pendently from one another. Each one has its own page table, with its own map-
ping of virtual pages to physical page frames. When the hardware wants to fetch an
instruction, it knows that it must use I-space and the I-space page table. Similarly,
data must go through the D-space page table. Other than this distinction, having
separate I- and D-spaces does not introduce any special complications for the oper-
ating system and it does double the available address space.

228 MEMORY MANAGEMENT CHAP. 3

While address spaces these days are large, their sizes used to be a serious prob-
lem. Even today, though, separate I- and D-spaces are still common. However,
rather than for the normal address spaces, they are now used to divide the L1
cache. After all, in the L1 cache, memory is still plenty scarce.

3.5.5 Shared Pages

Another design issue is sharing. In a large multiprogramming system, it is
common for several users to be running the same program at the same time. Even a
single user may be running several programs that use the same library. It is clearly
more efficient to share the pages, to avoid having two copies of the same page in
memory at the same time. One problem is that not all pages are sharable. In partic-
ular, pages that are read-only, such as program text, can be shared, but for data
pages sharing is more complicated.

If separate I- and D-spaces are supported, it is relatively straightforward to
share programs by having two or more processes use the same page table for their
I-space but different page tables for their D-spaces. Typically in an implementation
that supports sharing in this way, page tables are data structures independent of the
process table. Each process then has two pointers in its process table: one to the I-
space page table and one to the D-space page table, as shown in Fig. 3-25. When
the scheduler chooses a process to run, it uses these pointers to locate the ap-
propriate page tables and sets up the MMU using them. Even without separate I-
and D-spaces, processes can share programs (or sometimes, libraries), but the
mechanism is more complicated.

When two or more processes share some code, a problem occurs with the shar-
ed pages. Suppose that processes A and B are both running the editor and sharing
its pages. If the scheduler decides to remove A from memory, evicting all its pages
and filling the empty page frames with some other program will cause B to gener-
ate a large number of page faults to bring them back in again.

Similarly, when A terminates, it is essential to be able to discover that the
pages are still in use so that their disk space will not be freed by accident. Search-
ing all the page tables to see if a page is shared is usually too expensive, so special
data structures are needed to keep track of shared pages, especially if the unit of
sharing is the individual page (or run of pages), rather than an entire page table.

Sharing data is trickier than sharing code, but it is not impossible. In particu-
lar, in UNIX, after a fork system call, the parent and child are required to share
both program text and data. In a paged system, what is often done is to give each
of these processes its own page table and have both of them point to the same set
of pages. Thus no copying of pages is done at fork time. However, all the data
pages are mapped into both processes as READ ONLY.

As long as both processes just read their data, without modifying it, this situa-
tion can continue. As soon as either process updates a memory word, the violation
of the read-only protection causes a trap to the operating system. A copy is then

SEC. 3.5 DESIGN ISSUES FOR PAGING SYSTEMS 229

-~

\\\

Process
table

s

Program Data 1 Data 2

L J
'

Page tables

Figure 3-25. Two processes sharing the same program sharing its page tables.

made of the offending page so that each process now has its own private copy.
Both copies are now set to READ/WRITE, so subsequent writes to either copy
proceed without trapping. This strategy means that those pages that are never mod-
ified (including all the program pages) need not be copied. Only the data pages that
are actually modified need to be copied. This approach, called copy on write, im-
proves performance by reducing copying.

3.5.6 Shared Libraries

Sharing can be done at other granularities than individual pages. If a program
is started up twice, most operating systems will automatically share all the text
pages so that only one copy is in memory. Text pages are always read only, so there
is no problem here. Depending on the operating system, each process may get its
own private copy of the data pages, or they may be shared and marked read only.
If any process modifies a data page, a private copy will be made for it, that is, copy
on write will be applied.

In modern systems, there are many large libraries used by many processes, for
example, multiple I/O and graphics libraries. Statically binding all these libraries to
every executable program on the disk would make them even more bloated than
they already are.

Instead, a common technique is to use shared libraries (which are called
DLLs or Dynamic Link Libraries on Windows). To make the idea of a shared

230 MEMORY MANAGEMENT CHAP. 3

library clear, first consider traditional linking. When a program is linked, one or
more object files and possibly some libraries are named in the command to the
linker, such as the UNIX command

Id *.0 —lc —=Im

which links all the .o (object) files in the current directory and then scans two li-
braries, /usr/lib/libc.a and /usr/lib/libm.a. Any functions called in the object files
but not present there (e.g., printf) are called undefined externals and are sought in
the libraries. If they are found, they are included in the executable binary. Any
functions that they call but are not yet present also become undefined externals.
For example, printf needs write, so if write is not already included, the linker will
look for it and include it when found. When the linker is done, an executable bina-
ry file is written to the disk containing all the functions needed. Functions present
in the libraries but not called are not included. When the program is loaded into
memory and executed, all the functions it needs are there.

Now suppose common programs use 20-50 MB worth of graphics and user in-
terface functions. Statically linking hundreds of programs with all these libraries
would waste a tremendous amount of space on the disk as well as wasting space in
RAM when they were loaded since the system would have no way of knowing it
could share them. This is where shared libraries come in. When a program is link-
ed with shared libraries (which are slightly different than static ones), instead of in-
cluding the actual function called, the linker includes a small stub routine that
binds to the called function at run time. Depending on the system and the configu-
ration details, shared libraries are loaded either when the program is loaded or
when functions in them are called for the first time. Of course, if another program
has already loaded the shared library, there is no need to load it again—that is the
whole point of it. Note that when a shared library is loaded or used, the entire li-
brary is not read into memory in a single blow. It is paged in, page by page, as
needed, so functions that are not called will not be brought into RAM.

In addition to making executable files smaller and also saving space in memo-
ry, shared libraries have another important advantage: if a function in a shared li-
brary is updated to remove a bug, it is not necessary to recompile the programs that
call it. The old binaries continue to work. This feature is especially important for
commercial software, where the source code is not distributed to the customer. For
example, if Microsoft finds and fixes a security error in some standard DLL, Win-
dows Update will download the new DLL and replace the old one, and all pro-
grams that use the DLL will automatically use the new version the next time they
are launched.

Shared libraries come with one little problem, however, that has to be solved,
however. The problem is illustrated in Fig. 3-26. Here we see two processes shar-
ing a library of size 20 KB (assuming each box is 4 KB). However, the library is
located at a different address in each process, presumably because the programs
themselves are not the same size. In process 1, the library starts at address 36K; in

SEC. 3.5 DESIGN ISSUES FOR PAGING SYSTEMS 231

process 2 it starts at 12K. Suppose that the first thing the first function in the li-
brary has to do is jump to address 16 in the library. If the library were not shared,
it could be relocated on the fly as it was loaded so that the jump (in process 1)
could be to virtual address 36K + 16. Note that the physical address in the RAM
where the library is located does not matter since all the pages are mapped from
virtual to physical addresses by the MMU hardware.

36K

12K

Process 1 RAM Process 2
Figure 3-26. A shared library being used by two processes.

However, since the library is shared, relocation on the fly will not work. After
all, when the first function is called by process 2 (at address 12K), the jump in-
struction has to go to 12K + 16, not 36K + 16. This is the little problem. One way
to solve it is to use copy on write and create new pages for each process sharing the
library, relocating them on the fly as they are created, but this scheme defeats the
purpose of sharing the library, of course.

A better solution is to compile shared libraries with a special compiler flag tel-
ling the compiler not to produce any instructions that use absolute addresses. In-
stead only instructions using relative addresses are used. For example, there is al-
most always an instruction that says jump forward (or backward) by n bytes (as
opposed to an instruction that gives a specific address to jump to). This instruction
works correctly no matter where the shared library is placed in the virtual address
space. By avoiding absolute addresses, the problem can be solved. Code that uses
only relative offsets is called position-independent code.

3.5.7 Mapped Files

Shared libraries are really a special case of a more general facility called mem-
ory-mapped files. The idea here is that a process can issue a system call to map a
file onto a portion of its virtual address space. In most implementations, no pages
are brought in at the time of the mapping, but as pages are touched, they are de-
mand paged in one page at a time, using the disk file as the backing store. When

232 MEMORY MANAGEMENT CHAP. 3

the process exits, or explicitly unmaps the file, all the modified pages are written
back to the file on disk.

Mapped files provide an alternative model for I/O. Instead, of doing reads and
writes, the file can be accessed as a big character array in memory. In some situa-
tions, programmers find this model more convenient.

If two or more processes map onto the same file at the same time, they can
communicate over shared memory. Writes done by one process to the shared mem-
ory are immediately visible when the other one reads from the part of its virtual ad-
dress spaced mapped onto the file. This mechanism thus provides a high-band-
width channel between processes and is often used as such (even to the extent of
mapping a scratch file). Now it should be clear that if memory-mapped files are
available, shared libraries can use this mechanism.

3.5.8 Cleaning Policy

Paging works best when there is an abundant supply of free page frames that
can be claimed as page faults occur. If every page frame is full, and furthermore
modified, before a new page can be brought in, an old page must first be written to
disk. To ensure a plentiful supply of free page frames, paging systems generally
have a background process, called the paging daemon, that sleeps most of the time
but is awakened periodically to inspect the state of memory. If too few page
frames are free, it begins selecting pages to evict using some page replacement al-
gorithm. If these pages have been modified since being loaded, they are written to
disk.

In any event, the previous contents of the page are remembered. In the event
one of the evicted pages is needed again before its frame has been overwritten, it
can be reclaimed by removing it from the pool of free page frames. Keeping a sup-
ply of page frames around yields better performance than using all of memory and
then trying to find a frame at the moment it is needed. At the very least, the paging
daemon ensures that all the free frames are clean, so they need not be written to
disk in a big hurry when they are required.

One way to implement this cleaning policy is with a two-handed clock. The
front hand is controlled by the paging daemon. When it points to a dirty page, that
page is written back to disk and the front hand is advanced. When it points to a
clean page, it is just advanced. The back hand is used for page replacement, as in
the standard clock algorithm. Only now, the probability of the back hand hitting a
clean page is increased due to the work of the paging daemon.

3.5.9 Virtual Memory Interface
Up until now, our whole discussion has assumed that virtual memory is

transparent to processes and programmers, that is, all they see is a large virtual ad-
dress space on a computer with a small(er) physical memory. With many systems,

SEC. 3.5 DESIGN ISSUES FOR PAGING SYSTEMS 233

that is true, but in some advanced systems, programmers have some control over
the memory map and can use it in nontraditional ways to enhance program behav-
ior. In this section, we will briefly look at a few of these.

One reason for giving programmers control over their memory map is to allow
two or more processes to share the same memory. sometimes in sophisticated
ways. If programmers can name regions of their memory, it may be possible for
one process to give another process the name of a memory region so that process
can also map it in. With two (or more) processes sharing the same pages, high
bandwidth sharing becomes possible—one process writes into the shared memory
and another one reads from it. A sophisticated example of such a communication
channel is described by De Bruijn (2011).

Sharing of pages can also be used to implement a high-performance mes-
sage-passing system. Normally, when messages are passed, the data are copied
from one address space to another, at considerable cost. If processes can control
their page map, a message can be passed by having the sending process unmap the
page(s) containing the message, and the receiving process mapping them in. Here
only the page names have to be copied, instead of all the data.

Yet another advanced memory management technique is distributed shared
memory (Feeley et al., 1995; Li, 1986; Li and Hudak, 1989; and Zekauskas et al.,
1994). The idea here is to allow multiple processes over a network to share a set of
pages, possibly, but not necessarily, as a single shared linear address space. When a
process references a page that is not currently mapped in, it gets a page fault. The
page fault handler, which may be in the kernel or in user space, then locates the
machine holding the page and sends it a message asking it to unmap the page and
send it over the network. When the page arrives, it is mapped in and the faulting in-
struction is restarted. We will examine distributed shared memory in Chap. 8.

3.6 IMPLEMENTATION ISSUES

Implementers of virtual memory systems have to make choices among the
major theoretical algorithms, such as second chance versus aging, local versus glo-
bal page allocation, and demand paging versus prepaging. But they also have to be
aware of a number of practical implementation issues as well. In this section we
will take a look at a few of the common problems and some solutions.

3.6.1 Operating System Involvement with Paging

There are four times when the operating system has paging-related work to do:
process creation time, process execution time, page fault time, and process termi-
nation time. We will now briefly examine each of these to see what has to be done.

When a new process is created in a paging system, the operating system has to
determine how large the program and data will be (initially) and create a page table

234 MEMORY MANAGEMENT CHAP. 3

for them. Space has to be allocated in memory for the page table and it has to be
initialized. The page table need not be resident when the process is swapped out
but has to be in memory when the process is running. In addition, space has to be
allocated in the swap area on disk so that when a page is swapped out, it has some-
where to go. The swap area also has to be initialized with program text and data so
that when the new process starts getting page faults, the pages can be brought in.
Some systems page the program text directly from the executable file, thus saving
disk space and initialization time. Finally, information about the page table and
swap area on disk must be recorded in the process table.

When a process is scheduled for execution, the MMU has to be reset for the
new process and the TLB flushed, to get rid of traces of the previously executing
process. The new process’ page table has to be made current, usually by copying it
or a pointer to it to some hardware register(s). Optionally, some or all of the proc-
ess’ pages can be brought into memory to reduce the number of page faults ini-
tially (e.g., it is certain that the page pointed to by the program counter will be
needed).

When a page fault occurs, the operating system has to read out hardware regis-
ters to determine which virtual address caused the fault. From this information, it
must compute which page is needed and locate that page on disk. It must then find
an available page frame in which to put the new page, evicting some old page if
need be. Then it must read the needed page into the page frame. Finally, it must
back up the program counter to have it point to the faulting instruction and let that
instruction execute again.

When a process exits, the operating system must release its page table, its
pages, and the disk space that the pages occupy when they are on disk. If some of
the pages are shared with other processes, the pages in memory and on disk can be
released only when the last process using them has terminated.

3.6.2 Page Fault Handling

We are finally in a position to describe in detail what happens on a page fault.
The sequence of events is as follows:

1. The hardware traps to the kernel, saving the program counter on the
stack. On most machines, some information about the state of the
current instruction is saved in special CPU registers.

2. An assembly-code routine is started to save the general registers and
other volatile information, to keep the operating system from destroy-
ing it. This routine calls the operating system as a procedure.

3. The operating system discovers that a page fault has occurred, and
tries to discover which virtual page is needed. Often one of the hard-
ware registers contains this information. If not, the operating system

SEC. 3.6 IMPLEMENTATION ISSUES 235

must retrieve the program counter, fetch the instruction, and parse it
in software to figure out what it was doing when the fault hit.

4. Once the virtual address that caused the fault is known, the system
checks to see if this address is valid and the protection is consistent
with the access. If not, the process is sent a signal or killed. If the ad-
dress is valid and no protection fault has occurred, the system checks
to see if a page frame is free. If no frames are free, the page re-
placement algorithm is run to select a victim.

5. If the page frame selected is dirty, the page is scheduled for transfer to
the disk, and a context switch takes place, suspending the faulting
process and letting another one run until the disk transfer has com-
pleted. In any event, the frame is marked as busy to prevent it from
being used for another purpose.

6. As soon as the page frame is clean (either immediately or after it is
written to disk), the operating system looks up the disk address where
the needed page is, and schedules a disk operation to bring it in.
While the page is being loaded, the faulting process is still suspended
and another user process is run, if one is available.

7. When the disk interrupt indicates that the page has arrived, the page
tables are updated to reflect its position, and the frame is marked as
being in the normal state.

8. The faulting instruction is backed up to the state it had when it began
and the program counter is reset to point to that instruction.

9. The faulting process is scheduled, and the operating system returns to
the (assembly-language) routine that called it.

10. This routine reloads the registers and other state information and re-
turns to user space to continue execution, as if no fault had occurred.

3.6.3 Instruction Backup

When a program references a page that is not in memory, the instruction caus-
ing the fault is stopped partway through and a trap to the operating system occurs.
After the operating system has fetched the page needed, it must restart the instruc-
tion causing the trap. This is easier said than done.

To see the nature of this problem at its worst, consider a CPU that has instruc-
tions with two addresses, such as the Motorola 680x0, widely used in embedded
systems. The instruction

MOV.L #6(A1),2(A0)

236 MEMORY MANAGEMENT CHAP. 3

is 6 bytes, for example (see Fig. 3-27). In order to restart the instruction, the oper-
ating system must determine where the first byte of the instruction is. The value of
the program counter at the time of the trap depends on which operand faulted and
how the CPU’s microcode has been implemented.

MOVE.L #6(A1), 2(A0)

I 16 Bits |
1000 MOVE } Opcode
1002 6 } First operand
1004 2 } Second operand

Figure 3-27. An instruction causing a page fault.

In Fig. 3-27, we have an instruction starting at address 1000 that makes three
memory references: the instruction word and two offsets for the operands. Depend-
ing on which of these three memory references caused the page fault, the program
counter might be 1000, 1002, or 1004 at the time of the fault. It is frequently im-
possible for the operating system to determine unambiguously where the instruc-
tion began. If the program counter is 1002 at the time of the fault, the operating
system has no way of telling whether the word in 1002 is a memory address asso-
ciated with an instruction at 1000 (e.g., the address of an operand) or an opcode.

Bad as this problem may be, it could have been worse. Some 680x0 addressing
modes use autoincrementing, which means that a side effect of executing the in-
struction is to increment one (or more) registers. Instructions that use autoincre-
ment mode can also fault. Depending on the details of the microcode, the incre-
ment may be done before the memory reference, in which case the operating sys-
tem must decrement the register in software before restarting the instruction. Or,
the autoincrement may be done after the memory reference, in which case it will
not have been done at the time of the trap and must not be undone by the operating
system. Autodecrement mode also exists and causes a similar problem. The pre-
cise details of whether autoincrements and autodecrements have or have not been
done before the corresponding memory references may differ from instruction to
instruction and from CPU model to CPU model.

Fortunately, on some machines the CPU designers provide a solution, usually
in the form of a hidden internal register into which the program counter is copied
just before each instruction is executed. These machines may also have a second
register telling which registers have already been autoincremented or autodecre-
mented, and by how much. Given this information, the operating system can unam-
biguously undo all the effects of the faulting instruction so that it can be restarted.
If this information is not available, the operating system has to jump through hoops
to figure out what happened and how to repair it. It is as though the hardware de-
signers were unable to solve the problem, so they threw up their hands and told the
operating system writers to deal with it. Nice guys.

SEC. 3.6 IMPLEMENTATION ISSUES 237
3.6.4 Locking Pages in Memory

Although we have not discussed I/O much in this chapter, the fact that a com-
puter has virtual memory does not mean that I/O is absent. Virtual memory and I/O
interact in subtle ways. Consider a process that has just issued a system call to
read from some file or device into a buffer within its address space. While waiting
for the 1/0 to complete, the process is suspended and another process is allowed to
run. This other process gets a page fault.

If the paging algorithm is global, there is a small, but nonzero, chance that the
page containing the I/O buffer will be chosen to be removed from memory. If an
I/O device is currently in the process of doing a DMA transfer to that page, remov-
ing it will cause part of the data to be written in the buffer where they belong, and
part of the data to be written over the just-loaded page. One solution to this prob-
lem is to lock pages engaged in I/O in memory so that they will not be removed.
Locking a page is often called pinning it in memory. Another solution is to do all
I/0O to kernel buffers and then copy the data to user pages later.

3.6.5 Backing Store

In our discussion of page replacement algorithms, we saw how a page is selec-
ted for removal. We have not said much about where on the disk it is put when it is
paged out. Let us now describe some of the issues related to disk management.

The simplest algorithm for allocating page space on the disk is to have a spe-
cial swap partition on the disk or, even better, on a separate disk from the file sys-
tem (to balance the I/O load). Most UNIX systems work like this. This partition
does not have a normal file system on it, which eliminates all the overhead of con-
verting offsets in files to block addresses. Instead, block numbers relative to the
start of the partition are used throughout.

When the system is booted, this swap partition is empty and is represented in
memory as a single entry giving its origin and size. In the simplest scheme, when
the first process is started, a chunk of the partition area the size of the first process
is reserved and the remaining area reduced by that amount. As new processes are
started, they are assigned chunks of the swap partition equal in size to their core
images. As they finish, their disk space is freed. The swap partition is managed as
a list of free chunks. Better algorithms will be discussed in Chap. 10.

Associated with each process is the disk address of its swap area, that is, where
on the swap partition its image is kept. This information is kept in the process ta-
ble. Calculating the address to write a page to becomes simple: just add the offset
of the page within the virtual address space to the start of the swap area. However,
before a process can start, the swap area must be initialized. One way is to copy
the entire process image to the swap area, so that it can be brought in as needed.
The other is to load the entire process in memory and let it be paged out as needed.

238 MEMORY MANAGEMENT CHAP. 3

However, this simple model has a problem: processes can increase in size after
starting. Although the program text is usually fixed, the data area can sometimes
grow, and the stack can always grow. Consequently, it may be better to reserve sep-
arate swap areas for the text, data, and stack and allow each of these areas to con-
sist of more than one chunk on the disk.

The other extreme is to allocate nothing in advance and allocate disk space for
each page when it is swapped out and deallocate it when it is swapped back in. In
this way, processes in memory do not tie up any swap space. The disadvantage is
that a disk address is needed in memory to keep track of each page on disk. In
other words, there must be a table per process telling for each page on disk where
it is. The two alternatives are shown in Fig. 3-28.

Main memory Disk Main memory Disk
AN
Pages Pages N
Swap area Swap area

[o]
[]

L]

[o]
[«]

ll:]

Page Page
table table

Disk

map é

(a) (b)

AN

Figure 3-28. (a) Paging to a static swap area. (b) Backing up pages dynamically.

In Fig. 3-28(a), a page table with eight pages is shown. Pages 0, 3, 4, and 6 are
in main memory. Pages 1,2, 5, and 7 are on disk. The swap area on disk is as large
as the process virtual address space (eight pages), with each page having a fixed lo-
cation to which it is written when it is evicted from main memory. Calculating this
address requires knowing only where the process’ paging area begins, since pages
are stored in it contiguously in order of their virtual page number. A page that is in
memory always has a shadow copy on disk, but this copy may be out of date if the
page has been modified since being loaded. The shaded pages in memory indicate
pages not present in memory. The shaded pages on the disk are (in principle)
superseded by the copies in memory, although if a memory page has to be swapped
back to disk and it has not been modified since it was loaded, the (shaded) disk
copy will be used.

In Fig. 3-28(b), pages do not have fixed addresses on disk. When a page is
swapped out, an empty disk page is chosen on the fly and the disk map (which has

SEC. 3.6 IMPLEMENTATION ISSUES 239

room for one disk address per virtual page) is updated accordingly. A page in
memory has no copy on disk. The pages’ entries in the disk map contain an invalid
disk address or a bit marking them as not in use.

Having a fixed swap partition is not always possible. For example, no disk par-
titions may be available. In this case, one or more large, preallocated files within
the normal file system can be used. Windows uses this approach. However, an
optimization can be used here to reduce the amount of disk space needed. Since the
program text of every process came from some (executable) file in the file system,
the executable file can be used as the swap area. Better yet, since the program text
is generally read only, when memory is tight and program pages have to be evicted
from memory, they are just discarded and read in again from the executable file
when needed. Shared libraries can also work this way.

3.6.6 Separation of Policy and Mechanism

An important tool for managing the complexity of any system is to split policy
from mechanism. This principle can be applied to memory management by having
most of the memory manager run as a user-level process. Such a separation was
first done in Mach (Young et al., 1987) on which the discussion below is based.

A simple example of how policy and mechanism can be separated is shown in
Fig. 3-29. Here the memory management system is divided into three parts:

1. A low-level MMU handler.
2. A page fault handler that is part of the kernel.
3. An external pager running in user space.

All the details of how the MMU works are encapsulated in the MMU handler,
which is machine-dependent code and has to be rewritten for each new platform
the operating system is ported to. The page-fault handler is machine-independent
code and contains most of the mechanism for paging. The policy is largely deter-
mined by the external pager, which runs as a user process.

When a process starts up, the external pager is notified in order to set up the
process’ page map and allocate the necessary backing store on the disk if need be.
As the process runs, it may map new objects into its address space, so the external
pager is once again notified.

Once the process starts running, it may get a page fault. The fault handler fig-
ures out which virtual page is needed and sends a message to the external pager,
telling it the problem. The external pager then reads the needed page in from the
disk and copies it to a portion of its own address space. Then it tells the fault hand-
ler where the page is. The fault handler then unmaps the page from the external
pager’s address space and asks the MMU handler to put it into the user’s address
space at the right place. Then the user process can be restarted.

240 MEMORY MANAGEMENT CHAP. 3

3. Request page

/\ Disk

Main memory

User User External \<¢————
space) process 4. Page
2. Needed arrives
page
[1.Page¢
fault
Kernel
space handler
page in

Figure 3-29. Page fault handling with an external pager.

This implementation leaves open where the page replacement algorithm is put.
It would be cleanest to have it in the external pager, but there are some problems
with this approach. Principal among these is that the external pager does not have
access to the R and M bits of all the pages. These bits play a role in many of the
paging algorithms. Thus, either some mechanism is needed to pass this informa-
tion up to the external pager, or the page replacement algorithm must go in the ker-
nel. In the latter case, the fault handler tells the external pager which page it has
selected for eviction and provides the data, either by mapping it into the external
pager’s address space or including it in a message. Either way, the external pager
writes the data to disk.

The main advantage of this implementation is more modular code and greater
flexibility. The main disadvantage is the extra overhead of crossing the user-kernel
boundary several times and the overhead of the various messages being sent be-
tween the pieces of the system. At the moment, the subject is highly controversial,
but as computers get faster and faster, and the software gets more and more com-
plex, in the long run sacrificing some performance for more reliable software will
probably be acceptable to most implementers.

3.7 SEGMENTATION

The virtual memory discussed so far is one-dimensional because the virtual ad-
dresses go from O to some maximum address, one address after another. For many
problems, having two or more separate virtual address spaces may be much better
than having only one. For example, a compiler has many tables that are built up as
compilation proceeds, possibly including

SEC. 3.7 SEGMENTATION 241

The source text being saved for the printed listing (on batch systems).
The symbol table, containing the names and attributes of variables.
The table containing all the integer and floating-point constants used.

The parse tree, containing the syntactic analysis of the program.

W AW N =

The stack used for procedure calls within the compiler.

Each of the first four tables grows continuously as compilation proceeds. The last
one grows and shrinks in unpredictable ways during compilation. In a one-dimen-
sional memory, these five tables would have to be allocated contiguous chunks of
virtual address space, as in Fig. 3-30.

Virtual address space

Call stack }
} Free
:Icligé:tsesdst%i%z Space currently being
parse tree Parse tree used by the parse tree

Constant table *

Source text *

bumped into the

source text table

‘ Symbol table has
Symbol table

Figure 3-30. In a one-dimensional address space with growing tables, one table
may bump into another.

Consider what happens if a program has a much larger than usual number of
variables but a normal amount of everything else. The chunk of address space allo-
cated for the symbol table may fill up, but there may be lots of room in the other
tables. What is needed is a way of freeing the programmer from having to manage
the expanding and contracting tables, in the same way that virtual memory elimi-
nates the worry of organizing the program into overlays.

A straightforward and quite general solution is to provide the machine with
many completely independent address spaces, which are called segments. Each
segment consists of a linear sequence of addresses, starting at 0 and going up to
some maximum value. The length of each segment may be anything from O to the

242 MEMORY MANAGEMENT CHAP. 3
maximum address allowed. Different segments may, and usually do, have different
lengths. Moreover, segment lengths may change during execution. The length of a
stack segment may be increased whenever something is pushed onto the stack and
decreased whenever something is popped off the stack.

Because each segment constitutes a separate address space, different segments
can grow or shrink independently without affecting each other. If a stack in a cer-
tain segment needs more address space to grow, it can have it, because there is
nothing else in its address space to bump into. Of course, a segment can fill up, but
segments are usually very large, so this occurrence is rare. To specify an address
in this segmented or two-dimensional memory, the program must supply a two-part
address, a segment number, and an address within the segment. Figure 3-31 illus-
trates a segmented memory being used for the compiler tables discussed earlier.
Five independent segments are shown here.

20K
16K — 16K
12K~ 12K 12K |~ 12K
Symbol
table
8K 8K 8K [~ Parse 8K
tree
Source Call
text stack
4K 4K 4K — 4K
Constants
0K 0K (L 0K
Segment Segment Segment Segment Segment
0 1 2 3 4

Figure 3-31. A segmented memory allows each table to grow or shrink indepen-
dently of the other tables.

We emphasize here that a segment is a logical entity, which the programmer is
aware of and uses as a logical entity. A segment might contain a procedure, or an
array, or a stack, or a collection of scalar variables, but usually it does not contain a
mixture of different types.

A segmented memory has other advantages besides simplifying the handling of
data structures that are growing or shrinking. If each procedure occupies a sepa-
rate segment, with address O as its starting address, the linking of procedures com-
piled separately is greatly simplified. After all the procedures that constitute a pro-
gram have been compiled and linked up, a procedure call to the procedure in seg-
ment n will use the two-part address (n, 0) to address word O (the entry point).

SEC. 3.7 SEGMENTATION 243

If the procedure in segment n is subsequently modified and recompiled, no
other procedures need be changed (because no starting addresses have been modi-
fied), even if the new version is larger than the old one. With a one-dimensional
memory, the procedures are packed tightly right up next to each other, with no ad-
dress space between them. Consequently, changing one procedure’s size can affect
the starting address of all the other (unrelated) procedures in the segment. This, in
turn, requires modifying all procedures that call any of the moved procedures, in
order to incorporate their new starting addresses. If a program contains hundreds
of procedures, this process can be costly.

Segmentation also facilitates sharing procedures or data between several proc-
esses. A common example is the shared library. Modern workstations that run ad-
vanced window systems often have extremely large graphical libraries compiled
into nearly every program. In a segmented system, the graphical library can be put
in a segment and shared by multiple processes, eliminating the need for having it in
every process’ address space. While it is also possible to have shared libraries in
pure paging systems, it is more complicated. In effect, these systems do it by sim-
ulating segmentation.

Since each segment forms a logical entity that programmers know about, such
as a procedure, or an array, different segments can have different kinds of protec-
tion. A procedure segment can be specified as execute only, prohibiting attempts
to read from or store into it. A floating-point array can be specified as read/write
but not execute, and attempts to jump to it will be caught. Such protection is help-
ful in catching bugs. Paging and segmentation are compared in Fig. 3-32.

3.7.1 Implementation of Pure Segmentation

The implementation of segmentation differs from paging in an essential way:
pages are of fixed size and segments are not. Figure 3-33(a) shows an example of
physical memory initially containing five segments. Now consider what happens if
segment 1 is evicted and segment 7, which is smaller, is put in its place. We arrive
at the memory configuration of Fig. 3-33(b). Between segment 7 and segment 2 is
an unused area—that is, a hole. Then segment 4 is replaced by segment 5, as in
Fig. 3-33(c), and segment 3 is replaced by segment 6, as in Fig. 3-33(d). After the
system has been running for a while, memory will be divided up into a number of
chunks, some containing segments and some containing holes. This phenomenon,
called checkerboarding or external fragmentation, wastes memory in the holes.
It can be dealt with by compaction, as shown in Fig. 3-33(e).

3.7.2 Segmentation with Paging: MULTICS

If the segments are large, it may be inconvenient, or even impossible, to keep
them in main memory in their entirety. This leads to the idea of paging them, so
that only those pages of a segment that are actually needed have to be around.

MEMORY MANAGEMENT CHAP. 3
Consideration Paging Segmentation

Need the programmer be aware No Yes

that this technique is being used?

How many linear address 1 Many

spaces are there?

Can the total address space Yes Yes

exceed the size of physical

memory?

Can procedures and data be No Yes

distinguished and separately

protected?

Can tables whose size fluctuates No Yes

be accommodated easily?

Is sharing of procedures No Yes

between users facilitated?

Why was this technique To get a large To allow programs

invented? linear address and data to be broken
space without up into logically
having to buy independent address
more physical spaces and to aid
memory sharing and

protection

Figure 3-32. Comparison of paging and segmentation.

Several significant systems have supported paged segments. In this section we will
describe the first one: MULTICS. In the next one we will discuss a more recent
one: the Intel x86 up until the x86-64.

The MULTICS operating system was one of the most influential operating sys-
tems ever, having had a major influence on topics as disparate as UNIX, the x86
memory architecture, TLBs, and cloud computing. It was started as a research
project at M.I.T. and went live in 1969. The last MULTICS system was shut down
in 2000, a run of 31 years. Few other operating systems have lasted more-or-less
unmodified anywhere near that long. While operating systems called Windows
have also have be around that long, Windows 8 has absolutely nothing in common
with Windows 1.0 except the name and the fact that it was written by Microsoft.
Even more to the point, the ideas developed in MULTICS are as valid and useful
now as they were in 1965, when the first paper was published (Corbat6 and Vys-
sotsky, 1965). For this reason, we will now spend a little bit of time looking at the
most innovative aspect of MULTICS, the virtual memory architecture. More infor-
mation about MULTICS can be found at www.multicians.org.

MULTICS ran on the Honeywell 6000 machines and their descendants and
provided each program with a virtual memory of up to 2'® segments, each of which

www.multicians.org

SEC. 3.7 SEGMENTATION 245

Segment 4 Segment 4 (3K) (3K)
(7K) (7K) Segment 5 Segment 5 (10K)
(4K) (4K)
(4K)
Segment 3 Segment 3 Segment 3 S i5
(8K) (8K) (8K) Segment 6 egmen
(4K)
(4K)
Segment 6
Segment 2 Segment 2 Segment 2 Segment 2 (4K)
K K K K
(5K) (5K) (5K) (5K) Segment 2
(3K) (3K) (3K) (5K)
Segment 1
(8K) Segment 7 Segment 7 Segment 7 Segment 7
(5K) (5K) (5K) (5K)
Segment 0 Segment 0 Segment 0 Segment 0 Segment 0
(4K) (4K) (4K) (4K) (4K)
(@) (b) (c) (d) (e)

Figure 3-33. (a)-(d) Development of checkerboarding. (e) Removal of the
checkerboarding by compaction.

was up to 65,536 (36-bit) words long. To implement this, the MULTICS designers
chose to treat each segment as a virtual memory and to page it, combining the ad-
vantages of paging (uniform page size and not having to keep the whole segment in
memory if only part of it was being used) with the advantages of segmentation
(ease of programming, modularity, protection, sharing).

Each MULTICS program had a segment table, with one descriptor per seg-
ment. Since there were potentially more than a quarter of a million entries in the
table, the segment table was itself a segment and was paged. A segment descriptor
contained an indication of whether the segment was in main memory or not. If any
part of the segment was in memory, the segment was considered to be in memory,
and its page table was in memory. If the segment was in memory, its descriptor
contained an 18-bit pointer to its page table, as in Fig. 3-34(a). Because physical
addresses were 24 bits and pages were aligned on 64-byte boundaries (implying
that the low-order 6 bits of page addresses were 000000), only 18 bits were needed
in the descriptor to store a page table address. The descriptor also contained the
segment size, the protection bits, and other items. Figure 3-34(b) illustrates a seg-
ment descriptor. The address of the segment in secondary memory was not in the
segment descriptor but in another table used by the segment fault handler.

Each segment was an ordinary virtual address space and was paged in the same
way as the nonsegmented paged memory described earlier in this chapter. The nor-
mal page size was 1024 words (although a few small segments used by MULTICS
itself were not paged or were paged in units of 64 words to save physical memory).

An address in MULTICS consisted of two parts: the segment and the address
within the segment. The address within the segment was further divided into a page

246

~—36 bits———

MEMORY MANAGEMENT

CHAP. 3

|

>~

l Page 2 entry
| Page 1 entry

Segment 6 descriptor

Page 0 entry

Segment 5 descriptor

Page table for segment 3

Segment 4 descriptor

Segment 3 descriptor

4 4

Segment 2 descriptor

™~ >~

Segment 1 descriptor

Page 2 entry

Segment 0 descriptor

Page 1 entry

Descriptor segment

Page 0 entry

Page table for segment 1

18 9 111 8 3
Main memory address Segment length
of the page table (in pages)
Page size:
0= 1024 words ——
1 =64 words

0 = segment is paged
1 = segment is not paged

Miscellaneous bits ——

Protection bits

(b)

Figure 3-34. The MULTICS virtual memory. (a) The descriptor segment point-
ed to the page tables. (b) A segment descriptor. The numbers are the field

lengths.

number and a word within the page, as shown in Fig. 3-35. When a memory refer-
ence occurred, the following algorithm was carried out.

1. The segment number was used to find the segment descriptor.

2. A check was made to see if the segment’s page table was in memory.
If it was, it was located. If it was not, a segment fault occurred. If
there was a protection violation, a fault (trap) occurred.

SEC. 3.7 SEGMENTATION 247

3. The page table entry for the requested virtual page was examined. If
the page itself was not in memory, a page fault was triggered. If it
was in memory, the main-memory address of the start of the page was
extracted from the page table entry.

4. The offset was added to the page origin to give the main memory ad-
dress where the word was located.

5. The read or store finally took place.

Address within
the segment

Segment number Page Offset within
number the page
18 6 10

Figure 3-35. A 34-bit MULTICS virtual address.

This process is illustrated in Fig. 3-36. For simplicity, the fact that the descrip-
tor segment was itself paged has been omitted. What really happened was that a
register (the descriptor base register) was used to locate the descriptor segment’s
page table, which, in turn, pointed to the pages of the descriptor segment. Once the
descriptor for the needed segment was been found, the addressing proceeded as
shown in Fig. 3-36.

As you have no doubt guessed by now, if the preceding algorithm were ac-
tually carried out by the operating system on every instruction, programs would not
run very fast. In reality, the MULTICS hardware contained a 16-word high-speed
TLB that could search all its entries in parallel for a given key. This was the first
system to have a TLB, something used in all modern architectures. It is illustrated
in Fig. 3-37. When an address was presented to the computer, the addressing hard-
ware first checked to see if the virtual address was in the TLB. If so, it got the
page frame number directly from the TLB and formed the actual address of the ref-
erenced word without having to look in the descriptor segment or page table.

The addresses of the 16 most recently referenced pages were kept in the TLB.
Programs whose working set was smaller than the TLB size came to equilibrium
with the addresses of the entire working set in the TLB and therefore ran ef-
ficiently; otherwise, there were TLB faults.

3.7.3 Segmentation with Paging: The Intel x86

Up until the x86-64, the virtual memory system of the x86 resembled that of
MULTICS in many ways, including the presence of both segmentation and paging.
Whereas MULTICS had 256K independent segments, each up to 64K 36-bit
words, the x86 has 16K independent segments, each holding up to 1 billion 32-bit

248 MEMORY MANAGEMENT CHAP. 3

MULTICS virtual address

Segment number Page Offset
number
Word
Descriptor Page frame
Segment Page ?ﬁSEt
number Descriptor number Page Page
segment table

Figure 3-36. Conversion of a two-part MULTICS address into a main memory address.

Comparison Is this
field entry
used?
Segment Virtual Page

number page frame Protection Age i

4 1 7 Read/write 183 |1

6 0 2 Read only 10 |1

12 3 1 Read/write 2 1

0

2 1 0 Execute only 7 1

2 2 12 Execute only 9 1
~—— —

Figure 3-37. A simplified version of the MULTICS TLB. The existence of two
page sizes made the actual TLB more complicated.

words. Although there are fewer segments, the larger segment size is far more im-
portant, as few programs need more than 1000 segments, but many programs need
large segments. As of x86-64, segmentation is considered obsolete and is no longer
supported, except in legacy mode. Although some vestiges of the old segmentation

SEC. 3.7 SEGMENTATION 249

mechanisms are still available in x86-64’s native mode, mostly for compatibility,
they no longer serve the same role and no longer offer true segmentation. The
x86-32, however, still comes equipped with the whole shebang and it is the CPU
we will discuss in this section.

The heart of the x86 virtual memory consists of two tables, called the LDT
(Local Descriptor Table) and the GDT (Global Descriptor Table). Each pro-
gram has its own LDT, but there is a single GDT, shared by all the programs on the
computer. The LDT describes segments local to each program, including its code,
data, stack, and so on, whereas the GDT describes system segments, including the
operating system itself.

To access a segment, an x86 program first loads a selector for that segment into
one of the machine’s six segment registers. During execution, the CS register holds
the selector for the code segment and the DS register holds the selector for the data
segment. The other segment registers are less important. Each selector is a 16-bit
number, as shown in Fig. 3-38.

Bits 13 1 2

Index

/N

0=GDT/1 =LDT Privilege level (0-3)
Figure 3-38. An x86 selector.

One of the selector bits tells whether the segment is local or global (i.e., wheth-
er it is in the LDT or GDT). Thirteen other bits specify the LDT or GDT entry
number, so these tables are each restricted to holding 8K segment descriptors. The
other 2 bits relate to protection, and will be described later. Descriptor O is forbid-
den. It may be safely loaded into a segment register to indicate that the segment
register is not currently available. It causes a trap if used.

At the time a selector is loaded into a segment register, the corresponding de-
scriptor is fetched from the LDT or GDT and stored in microprogram registers, so
it can be accessed quickly. As depicted in Fig. 3-39, a descriptor consists of 8
bytes, including the segment’s base address, size, and other information.

The format of the selector has been cleverly chosen to make locating the de-
scriptor easy. First either the LDT or GDT is selected, based on selector bit 2.
Then the selector is copied to an internal scratch register, and the 3 low-order bits
set to 0. Finally, the address of either the LDT or GDT table is added to it, to give
a direct pointer to the descriptor. For example, selector 72 refers to entry 9 in the
GDT, which is located at address GDT + 72.

Let us now trace the steps by which a (selector, offset) pair is converted to a
physical address. As soon as the microprogram knows which segment register is

250 MEMORY MANAGEMENT CHAP. 3

0: 16-Bit segment f 0: Segment is absent from memory
1: 32-Bit segment | 1: Segment is present in memory

Privilege level (0-3)

0: Li is in bytes 0: System
1: Liis in pages 1: Application

ﬁ Segment type and protection

Base24-31 |G|D|o 1'-('5?}'; PloPL[S| Type Base 1623 |4
Base 0-15 Limit 0-15 0

) Relative

32 Bits address

Figure 3-39. x86 code segment descriptor. Data segments differ slightly.

being used, it can find the complete descriptor corresponding to that selector in its
internal registers. If the segment does not exist (selector 0), or is currently paged
out, a trap occurs.

The hardware then uses the Limit field to check if the offset is beyond the end
of the segment, in which case a trap also occurs. Logically, there should be a 32-bit
field in the descriptor giving the size of the segment, but only 20 bits are available,
so a different scheme is used. If the Gbit (Granularity) field is O, the Limit field is
the exact segment size, up to 1 MB. Ifitis 1, the Limit field gives the segment size
in pages instead of bytes. With a page size of 4 KB, 20 bits are enough for seg-
ments up to 2°? bytes.

Assuming that the segment is in memory and the offset is in range, the x86
then adds the 32-bit Base field in the descriptor to the offset to form what is called
a linear address, as shown in Fig.3-40. The Base field is broken up into three
pieces and spread all over the descriptor for compatibility with the 286, in which
the Base is only 24 bits. In effect, the Base field allows each segment to start at an
arbitrary place within the 32-bit linear address space.

Selector Offset
Descriptor
Base address 4»6)
e Limit
Other fields

32-Bit linear address

Figure 3-40. Conversion of a (selector, offset) pair to a linear address.

SEC. 3.7 SEGMENTATION 251

If paging is disabled (by a bit in a global control register), the linear address is
interpreted as the physical address and sent to the memory for the read or write.
Thus with paging disabled, we have a pure segmentation scheme, with each seg-
ment’s base address given in its descriptor. Segments are not prevented from over-
lapping, probably because it would be too much trouble and take too much time to
verify that they were all disjoint.

On the other hand, if paging is enabled, the linear address is interpreted as a
virtual address and mapped onto the physical address using page tables, pretty
much as in our earlier examples. The only real complication is that with a 32-bit
virtual address and a 4-KB page, a segment might contain 1 million pages, so a
two-level mapping is used to reduce the page table size for small segments.

Each running program has a page directory consisting of 1024 32-bit entries.
It is located at an address pointed to by a global register. Each entry in this direc-
tory points to a page table also containing 1024 32-bit entries. The page table en-
tries point to page frames. The scheme is shown in Fig. 3-41.

Linear address

Bits 10 10 12
Dir Page Offset
(@)
Page directory Page table Page frame
T T T l Word J« l
selected
1024
Entries T
f T Offset
Dir
i Page
Directory entry Page table
points to entry points
page table to word
(b)

Figure 3-41. Mapping of a linear address onto a physical address.

In Fig. 3-41(a) we see a linear address divided into three fields, Dir, Page, and
Offset. The Dir field is used to index into the page directory to locate a pointer to
the proper page table. Then the Page field is used as an index into the page table to
find the physical address of the page frame. Finally, Offset is added to the address
of the page frame to get the physical address of the byte or word needed.

The page table entries are 32 bits each, 20 of which contain a page frame num-
ber. The remaining bits contain access and dirty bits, set by the hardware for the
benefit of the operating system, protection bits, and other utility bits.

252 MEMORY MANAGEMENT CHAP. 3

Each page table has entries for 1024 4-KB page frames, so a single page table
handles 4 megabytes of memory. A segment shorter than 4M will have a page di-
rectory with a single entry, a pointer to its one and only page table. In this way, the
overhead for short segments is only two pages, instead of the million pages that
would be needed in a one-level page table.

To avoid making repeated references to memory, the x86, like MULTICS, has
a small TLB that directly maps the most recently used Dir-Page combinations
onto the physical address of the page frame. Only when the current combination is
not present in the TLB is the mechanism of Fig. 3-41 actually carried out and the
TLB updated. As long as TLB misses are rare, performance is good.

It is also worth noting that if some application does not need segmentation but
is simply content with a single, paged, 32-bit address space, that model is possible.
All the segment registers can be set up with the same selector, whose descriptor
has Base =0 and Limit set to the maximum. The instruction offset will then be the
linear address, with only a single address space used—in effect, normal paging. In
fact, all current operating systems for the x86 work this way. OS/2 was the only
one that used the full power of the Intel MMU architecture.

So why did Intel kill what was a variant of the perfectly good MULTICS mem-
ory model that it supported for close to three decades? Probably the main reason is
that neither UNIX nor Windows ever used it, even though it was quite efficient be-
cause it eliminated system calls, turning them into lightning-fast procedure calls to
the relevant address within a protected operating system segment. None of the
developers of any UNIX or Windows system wanted to change their memory
model to something that was x86 specific because it would break portability to
other platforms. Since the software was not using the feature, Intel got tired of
wasting chip area to support it and removed it from the 64-bit CPUs.

All in all, one has to give credit to the x86 designers. Given the conflicting
goals of implementing pure paging, pure segmentation, and paged segments, while
at the same time being compatible with the 286, and doing all of this efficiently,
the resulting design is surprisingly simple and clean.

3.8 RESEARCH ON MEMORY MANAGEMENT

Traditional memory management, especially paging algorithms for uniproces-
sor CPUs, was once a fruitful area for research, but most of that seems to have
largely died off, at least for general-purpose systems, although there are some peo-
ple who never say die (Moruz et al., 2012) or are focused on some application,
such as online transaction processing, that has specialized requirements (Stoica and
Ailamaki, 2013). Even on uniprocessors, paging to SSDs rather than to hard disks
brings up new issues and requires new algorithms (Chen et al., 2012). Paging to
the up-and-coming nonvolatile phase-change memories also requires rethinking

SEC. 3.8 RESEARCH ON MEMORY MANAGEMENT 253

paging for performance (Lee et al., 2013), and latency reasons (Saito and Oikawa,
2012), and because they wear out if used too much (Bheda et al., 2011, 2012).

More generally, research on paging is still ongoing, but it focuses on newer
kinds of systems. For example, virtual machines have rekindled interest in mem-
ory management (Bugnion et al., 2012). In the same area, the work by Jantz et al.
(2013) lets applications provide guidance to the system with respect to deciding on
the physical page to back a virtual page. An aspect of server consolidation in the
cloud that affects paging is that the amount of physical memory available to a vir-
tual machine can vary over time, requiring new algorithms (Peserico, 2013).

Paging in multicore systems has become a hot new area of research (Boyd-
Wickizer et al., 2008, Baumann et al., 2009). One contributing factor is that multi-
core systems tend to have a lot of caches shared in complex ways (Lopez-Ortiz and
Salinger, 2012). Closely related to this multicore work is research on paging in
NUMA systems, where different pieces of memory may have different access
times (Dashti et al., 2013; and Lankes et al., 2012).

Also, smartphones and tablets have become small PCs and many of them page
RAM to “disk,” only disk on a smartphone is flash memory. Some recent work is
reported by Joo et al. (2012).

Finally, interest is memory management for real-time systems continues to be
present (Kato et al., 2011).

3.9 SUMMARY

In this chapter we have examined memory management. We saw that the sim-
plest systems do not swap or page at all. Once a program is loaded into memory, it
remains there in place until it finishes. Some operating systems allow only one
process at a time in memory, while others support multiprogramming. This model
is still common in small, embedded real-time systems.

The next step up is swapping. When swapping is used, the system can handle
more processes than it has room for in memory. Processes for which there is no
room are swapped out to the disk. Free space in memory and on disk can be kept
track of with a bitmap or a hole list.

Modern computers often have some form of virtual memory. In the simplest
form, each process’ address space is divided up into uniform-sized blocks called
pages, which can be placed into any available page frame in memory. There are
many page replacement algorithms; two of the better algorithms are aging and
WSClock.

To make paging systems work well, choosing an algorithm is not enough;
attention to such issues as determining the working set, memory allocation policy,
and page size is required.

Segmentation helps in handling data structures that can change size during ex-
ecution and simplifies linking and sharing. It also facilitates providing different

254 MEMORY MANAGEMENT CHAP. 3

protection for different segments. Sometimes segmentation and paging are com-
bined to provide a two-dimensional virtual memory. The MULTICS system and the
32-bit Intel x86 support segmentation and paging. Still, it is clear that few operat-
ing system developers care deeply about segmentation (because they are married to
a different memory model). Consequently, it seems to be going out of fashion fast.
Today, even the 64-bit version of the x86 no longer supports real segmentation.

PROBLEMS

1. The IBM 360 had a scheme of locking 2-KB blocks by assigning each one a 4-bit key
and having the CPU compare the key on every memory reference to the 4-bit key in the
PSW. Name two drawbacks of this scheme not mentioned in the text.

2. In Fig. 3-3 the base and limit registers contain the same value, 16,384. Is this just an
accident, or are they always the same? It is just an accident, why are they the same in
this example?

3. A swapping system eliminates holes by compaction. Assuming a random distribution
of many holes and many data segments and a time to read or write a 32-bit memory
word of 4 nsec, about how long does it take to compact 4 GB? For simplicity, assume
that word O is part of a hole and that the highest word in memory contains valid data.

4. Consider a swapping system in which memory consists of the following hole sizes in
memory order: 10 MB, 4 MB, 20 MB, 18 MB, 7 MB, 9 MB, 12 MB, and 15 MB.
Which hole is taken for successive segment requests of

(a) 12 MB
(b) 10 MB
(c) 9 MB

for first fit? Now repeat the question for best fit, worst fit, and next fit.
5. What is the difference between a physical address and a virtual address?

6. For each of the following decimal virtual addresses, compute the virtual page number
and offset for a 4-KB page and for an 8 KB page: 20000, 32768, 60000.

7. Using the page table of Fig. 3-9, give the physical address corresponding to each of the
following virtual addresses:

(a) 20
(b) 4100
(c) 8300

8. The Intel 8086 processor did not have an MMU or support virtual memory. Neverthe-
less, some companies sold systems that contained an unmodified 8086 CPU and did
paging. Make an educated guess as to how they did it. (Hint: Think about the logical
location of the MMU.)

CHAP. 3 PROBLEMS 255

9.
10.

11.

12.

13.

14.

15.

16.

17.

What kind of hardware support is needed for a paged virtual memory to work?

Copy on write is an interesting idea used on server systems. Does it make any sense on
a smartphone?

Consider the following C program:

int X[NJ;
int step = M; /* M is some predefined constant */
for (inti=0;i<N;i+=step) X[i] = X[i] + 1;

(a) If this program is run on a machine with a 4-KB page size and 64-entry TLB, what
values of M and N will cause a TLB miss for every execution of the inner loop?

(b) Would your answer in part (a) be different if the loop were repeated many times?
Explain.

The amount of disk space that must be available for page storage is related to the maxi-
mum number of processes, 7, the number of bytes in the virtual address space, v, and
the number of bytes of RAM, r. Give an expression for the worst-case disk-space re-
quirements. How realistic is this amount?

If an instruction takes 1 nsec and a page fault takes an additional n nsec, give a formula
for the effective instruction time if page faults occur every k instructions.

A machine has a 32-bit address space and an 8-KB page. The page table is entirely in
hardware, with one 32-bit word per entry. When a process starts, the page table is cop-
ied to the hardware from memory, at one word every 100 nsec. If each process runs for
100 msec (including the time to load the page table), what fraction of the CPU time is
devoted to loading the page tables?

Suppose that a machine has 48-bit virtual addresses and 32-bit physical addresses.

(a) If pages are 4 KB, how many entries are in the page table if it has only a single
level? Explain.

(b) Suppose this same system has a TLB (Translation Lookaside Buffer) with 32 en-
tries. Furthermore, suppose that a program contains instructions that fit into one
page and it sequentially reads long integer elements from an array that spans thou-
sands of pages. How effective will the TLB be for this case?

You are given the following data about a virtual memory system:

(a)The TLB can hold 1024 entries and can be accessed in 1 clock cycle (1 nsec).
(b) A page table entry can be found in 100 clock cycles or 100 nsec.
(c) The average page replacement time is 6 msec.

If page references are handled by the TLB 99% of the time, and only 0.01% lead to a
page fault, what is the effective address-translation time?

Suppose that a machine has 38-bit virtual addresses and 32-bit physical addresses.

(a) What is the main advantage of a multilevel page table over a single-level one?

(b) With a two-level page table, 16-KB pages, and 4-byte entries, how many bits
should be allocated for the top-level page table field and how many for the next-
level page table field? Explain.

256 MEMORY MANAGEMENT CHAP. 3

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Section 3.3.4 states that the Pentium Pro extended each entry in the page table hier-
archy to 64 bits but still could only address only 4 GB of memory. Explain how this
statement can be true when page table entries have 64 bits.

A computer with a 32-bit address uses a two-level page table. Virtual addresses are
split into a 9-bit top-level page table field, an 11-bit second-level page table field, and
an offset. How large are the pages and how many are there in the address space?

A computer has 32-bit virtual addresses and 4-KB pages. The program and data toget-
her fit in the lowest page (0—4095) The stack fits in the highest page. How many en-
tries are needed in the page table if traditional (one-level) paging is used? How many
page table entries are needed for two-level paging, with 10 bits in each part?

Below is an execution trace of a program fragment for a computer with 512-byte
pages. The program is located at address 1020, and its stack pointer is at 8192 (the
stack grows toward 0). Give the page reference string generated by this program. Each
instruction occupies 4 bytes (1 word) including immediate constants. Both instruction
and data references count in the reference string.

Load word 6144 into register 0

Push register 0 onto the stack

Call a procedure at 5120, stacking the return address
Subtract the immediate constant 16 from the stack pointer
Compare the actual parameter to the immediate constant 4
Jump if equal to 5152

A computer whose processes have 1024 pages in their address spaces keeps its page
tables in memory. The overhead required for reading a word from the page table is 5
nsec. To reduce this overhead, the computer has a TLB, which holds 32 (virtual page,
physical page frame) pairs, and can do a lookup in 1 nsec. What hit rate is needed to
reduce the mean overhead to 2 nsec?

How can the associative memory device needed for a TLB be implemented in hard-
ware, and what are the implications of such a design for expandability?

A machine has 48-bit virtual addresses and 32-bit physical addresses. Pages are 8 KB.
How many entries are needed for a single-level linear page table?

A computer with an 8-KB page, a 256-KB main memory, and a 64-GB virtual address
space uses an inverted page table to implement its virtual memory. How big should the
hash table be to ensure a mean hash chain length of less than 1? Assume that the hash-
table size is a power of two.

A student in a compiler design course proposes to the professor a project of writing a
compiler that will produce a list of page references that can be used to implement the
optimal page replacement algorithm. Is this possible? Why or why not? Is there any-
thing that could be done to improve paging efficiency at run time?

Suppose that the virtual page reference stream contains repetitions of long sequences
of page references followed occasionally by a random page reference. For example, the
sequence: 0, 1, ... ,511,431,0, 1, ... , 511,332, 0, 1, ... consists of repetitions of the
sequence 0, 1, ..., 511 followed by a random reference to pages 431 and 332.

CHAP. 3 PROBLEMS 257

28.

29.

30.

31.

32.

33.

34.

(a) Why will the standard replacement algorithms (LRU, FIFO, clock) not be effective
in handling this workload for a page allocation that is less than the sequence
length?

(b) If this program were allocated 500 page frames, describe a page replacement ap-
proach that would perform much better than the LRU, FIFO, or clock algorithms.

If FIFO page replacement is used with four page frames and eight pages, how many
page faults will occur with the reference string 0172327103 if the four frames are ini-
tially empty? Now repeat this problem for LRU.

Consider the page sequence of Fig. 3-15(b). Suppose that the R bits for the pages B
through A are 11011011, respectively. Which page will second chance remove?

A small computer on a smart card has four page frames. At the first clock tick, the R
bits are 0111 (page O is O, the rest are 1). At subsequent clock ticks, the values are
1011, 1010, 1101, 0010, 1010, 1100, and 0001. If the aging algorithm is used with an
8-bit counter, give the values of the four counters after the last tick.

Give a simple example of a page reference sequence where the first page selected for
replacement will be different for the clock and LRU page replacement algorithms. As-
sume that a process is allocated 3=three frames, and the reference string contains page
numbers from the set 0, 1,2, 3.

In the WSClock algorithm of Fig. 3-20(c), the hand points to a page with R = 0. If
7 =400, will this page be removed? What about if 7 = 10007

Suppose that the WSClock page replacement algorithm uses a 7 of two ticks, and the
system state is the following:

Page | Time stamp v R M
0 6 1 0 1
1 9 1 1 0
2 9 1 1 1
3 7 1 0 0
4 4 0 0 0

where the three flag bits V, R, and M stand for Valid, Referenced, and Modified, re-
spectively.

(a) If a clock interrupt occurs at tick 10, show the contents of the new table entries. Ex-
plain. (You can omit entries that are unchanged.)

(b) Suppose that instead of a clock interrupt, a page fault occurs at tick 10 due to a read
request to page 4. Show the contents of the new table entries. Explain. (You can
omit entries that are unchanged.)

A student has claimed that “in the abstract, the basic page replacement algorithms
(FIFO, LRU, optimal) are identical except for the attribute used for selecting the page
to be replaced.”

(a) What is that attribute for the FIFO algorithm? LRU algorithm? Optimal algorithm?
(b) Give the generic algorithm for these page replacement algorithms.

258 MEMORY MANAGEMENT CHAP. 3

35.

36.

37.

38.

How long does it take to load a 64-KB program from a disk whose average seek time is
5 msec, whose rotation time is 5 msec, and whose tracks hold 1 MB

(a) for a 2-KB page size?
(b) for a 4-KB page size?

The pages are spread randomly around the disk and the number of cylinders is so large
that the chance of two pages being on the same cylinder is negligible.

A computer has four page frames. The time of loading, time of last access, and the R
and M bits for each page are as shown below (the times are in clock ticks):

Page Loaded Last ref. R M
0 126 280 1 0
1 230 265 0 1
2 140 270 0 0
3 110 285 1 1

(a) Which page will NRU replace?
(b) Which page will FIFO replace?
(c) Which page will LRU replace?
(d) Which page will second chance replace?

Suppose that two processes A and B share a page that is not in memory. If process A
faults on the shared page, the page table entry for process A must be updated once the
page is read into memory.

(a) Under what conditions should the page table update for process B be delayed even
though the handling of process A’s page fault will bring the shared page into mem-
ory? Explain.

(b) What is the potential cost of delaying the page table update?

Consider the following two-dimensional array:
int X[64][64];

Suppose that a system has four page frames and each frame is 128 words (an integer
occupies one word). Programs that manipulate the X array fit into exactly one page
and always occupy page 0. The data are swapped in and out of the other three frames.
The X array is stored in row-major order (i.e., X[0][1] follows X[0][0] in memory).
Which of the two code fragments shown below will generate the lowest number of
page faults? Explain and compute the total number of page faults.

Fragment A
for (int j = 0; j < 64; j++)
for (int i =0; i < 64; i++) X[i][j] = 0;
Fragment B
for (inti=0;1<64; i++)
for (int j = 0; j < 64; j++) X[i][j] = 0;

CHAP. 3 PROBLEMS 259

39.

40.

41.

42.

43.

44.

45.

46.

47.

You have been hired by a cloud computing company that deploys thousands of servers
at each of its data centers. They have recently heard that it would be worthwhile to
handle a page fault at server A by reading the page from the RAM memory of some
other server rather than its local disk drive.

(a) How could that be done?
(b) Under what conditions would the approach be worthwhile? Be feasible?

One of the first timesharing machines, the DEC PDP-1, had a (core) memory of 4K
18-bit words. It held one process at a time in its memory. When the scheduler decided
to run another process, the process in memory was written to a paging drum, with 4K
18-bit words around the circumference of the drum. The drum could start writing (or
reading) at any word, rather than only at word 0. Why do you suppose this drum was
chosen?

A computer provides each process with 65,536 bytes of address space divided into
pages of 4096 bytes each. A particular program has a text size of 32,768 bytes, a data
size of 16,386 bytes, and a stack size of 15,870 bytes. Will this program fit in the
machine’s address space? Suppose that instead of 4096 bytes, the page size were 512
bytes, would it then fit? Each page must contain either text, data, or stack, not a mix-
ture of two or three of them.

It has been observed that the number of instructions executed between page faults is di-
rectly proportional to the number of page frames allocated to a program. If the avail-
able memory is doubled, the mean interval between page faults is also doubled. Sup-
pose that a normal instruction takes 1 microsec, but if a page fault occurs, it takes 2001
usec (i.e., 2 msec) to handle the fault. If a program takes 60 sec to run, during which
time it gets 15,000 page faults, how long would it take to run if twice as much memory
were available?

A group of operating system designers for the Frugal Computer Company are thinking
about ways to reduce the amount of backing store needed in their new operating sys-
tem. The head guru has just suggested not bothering to save the program text in the
swap area at all, but just page it in directly from the binary file whenever it is needed.
Under what conditions, if any, does this idea work for the program text? Under what
conditions, if any, does it work for the data?

A machine-language instruction to load a 32-bit word into a register contains the 32-bit
address of the word to be loaded. What is the maximum number of page faults this in-
struction can cause?

Explain the difference between internal fragmentation and external fragmentation.
Which one occurs in paging systems? Which one occurs in systems using pure seg-
mentation?

When segmentation and paging are both being used, as in MULTICS, first the segment
descriptor must be looked up, then the page descriptor. Does the TLB also work this
way, with two levels of lookup?

We consider a program which has the two segments shown below consisting of instruc-
tions in segment 0, and read/write data in segment 1. Segment 0 has read/execute pro-
tection, and segment 1 has just read/write protection. The memory system is a demand-

260

48.

49.

50.

51.

52.

MEMORY MANAGEMENT CHAP. 3
paged virtual memory system with virtual addresses that have a 4-bit page number, and
a 10-bit offset. The page tables and protection are as follows (all numbers in the table
are in decimal):

Segment 0 Segment 1
Read/Execute Read/Write
Virtual Page # Page frame # Virtual Page # Page frame #
0 2 0 On Disk
1 On Disk 1 14
2 11 2 9
3 5 3 6
4 On Disk 4 On Disk
5 On Disk 5 13
6 4 6 8
7 3 7 12

For each of the following cases, either give the real (actual) memory address which re-
sults from dynamic address translation or identify the type of fault which occurs (either
page or protection fault).

(a) Fetch from segment 1, page 1, offset 3

(b) Store into segment 0, page 0, offset 16

(c) Fetch from segment 1, page 4, offset 28

(d) Jump to location in segment 1, page 3, offset 32

Can you think of any situations where supporting virtual memory would be a bad idea,
and what would be gained by not having to support virtual memory? Explain.

Virtual memory provides a mechanism for isolating one process from another. What
memory management difficulties would be involved in allowing two operating systems
to run concurrently? How might these difficulties be addressed?

Plot a histogram and calculate the mean and median of the sizes of executable binary
files on a computer to which you have access. On a Windows system, look at all .exe
and .dll files; on a UNIX system look at all executable files in /bin, /usr/bin, and
/local/bin that are not scripts (or use the file utility to find all executables). Determine
the optimal page size for this computer just considering the code (not data). Consider
internal fragmentation and page table size, making some reasonable assumption about
the size of a page table entry. Assume that all programs are equally likely to be run and
thus should be weighted equally.

Write a program that simulates a paging system using the aging algorithm. The number
of page frames is a parameter. The sequence of page references should be read from a
file. For a given input file, plot the number of page faults per 1000 memory references
as a function of the number of page frames available.

Write a program that simulates a toy paging system that uses the WSClock algorithm.
The system is a toy in that we will assume there are no write references (not very

CHAP. 3 PROBLEMS 261

53.

54.

5S.

realistic), and process termination and creation are ignored (eternal life). The inputs
will be:

e The reclamation age threshhold
e The clock interrupt interval expressed as number of memory references
* A file containing the sequence of page references

(a) Describe the basic data structures and algorithms in your implementation.

(b) Show that your simulation behaves as expected for a simple (but nontrivial) input
example.

(c) Plot the number of page faults and working set size per 1000 memory references.

(d) Explain what is needed to extend the program to handle a page reference stream
that also includes writes.

Write a program that demonstrates the effect of TLB misses on the effective memory
access time by measuring the per-access time it takes to stride through a large array.

(a) Explain the main concepts behind the program, and describe what you expect the
output to show for some practical virtual memory architecture.

(b) Run the program on some computer and explain how well the data fit your expecta-
tions.

(c) Repeat part (b) but for an older computer with a different architecture and explain
any major differences in the output.

Write a program that will demonstrate the difference between using a local page re-
placement policy and a global one for the simple case of two processes. You will need
a routine that can generate a page reference string based on a statistical model. This
model has N states numbered from 0 to N — 1 representing each of the possible page
references and a probability p; associated with each state i representing the chance that
the next reference is to the same page. Otherwise, the next page reference will be one
of the other pages with equal probability.

(a) Demonstrate that the page reference string-generation routine behaves properly for
some small N.

(b) Compute the page fault rate for a small example in which there is one process and a
fixed number of page frames. Explain why the behavior is correct.

(c) Repeat part (b) with two processes with independent page reference sequences and
twice as many page frames as in part (b).

(d) Repeat part (c) but using a global policy instead of a local one. Also, contrast the
per-process page fault rate with that of the local policy approach.

Write a program that can be used to compare the effectiveness of adding a tag field to
TLB entries when control is toggled between two programs. The tag field is used to ef-
fectively label each entry with the process id. Note that a nontagged TLB can be simu-
lated by requiring that all TLB entries have the same tag at any one time. The inputs
will be:

e The number of TLB entries available

e The clock interrupt interval expressed as number of memory references
* A file containing a sequence of (process, page references) entries

e The cost to update one TLB entry

262 MEMORY MANAGEMENT CHAP. 3

(a) Describe the basic data structures and algorithms in your implementation.

b) Show that your simulation behaves as expected for a simple (but nontrivial) input
example.

(c) Plot the number of TLB updates per 1000 references.

FILE SYSTEMS

All computer applications need to store and retrieve information. While a proc-
ess is running, it can store a limited amount of information within its own address
space. However, the storage capacity is restricted to the size of the virtual address
space. For some applications this size is adequate, but for others, such as airline
reservations, banking, or corporate record keeping, it is far too small.

A second problem with keeping information within a process’ address space is
that when the process terminates, the information is lost. For many applications
(e.g., for databases), the information must be retained for weeks, months, or even
forever. Having it vanish when the process using it terminates is unacceptable.
Furthermore, it must not go away when a computer crash kills the process.

A third problem is that it is frequently necessary for multiple processes to ac-
cess (parts of) the information at the same time. If we have an online telephone di-
rectory stored inside the address space of a single process, only that process can
access it. The way to solve this problem is to make the information itself indepen-
dent of any one process.

Thus, we have three essential requirements for long-term information storage:

1. It must be possible to store a very large amount of information.
2. The information must survive the termination of the process using it.
3. Multiple processes must be able to access the information at once.

Magnetic disks have been used for years for this long-term storage. In recent
years, solid-state drives have become increasingly popular, as they do not have any

263

264 FILE SYSTEMS CHAP. 4

moving parts that may break. Also, they offer fast random access. Tapes and opti-
cal disks have also been used extensively, but they have much lower performance
and are typically used for backups. We will study disks more in Chap. 5, but for
the moment, it is sufficient to think of a disk as a linear sequence of fixed-size
blocks and supporting two operations:

1. Read block k.
2. Write block &k

In reality there are more, but with these two operations one could, in principle,
solve the long-term storage problem.

However, these are very inconvenient operations, especially on large systems
used by many applications and possibly multiple users (e.g., on a server). Just a
few of the questions that quickly arise are:

1. How do you find information?
2. How do you keep one user from reading another user’s data?
3. How do you know which blocks are free?

and there are many more.

Just as we saw how the operating system abstracted away the concept of the
processor to create the abstraction of a process and how it abstracted away the con-
cept of physical memory to offer processes (virtual) address spaces, we can solve
this problem with a new abstraction: the file. Together, the abstractions of proc-
esses (and threads), address spaces, and files are the most important concepts relat-
ing to operating systems. If you really understand these three concepts from begin-
ning to end, you are well on your way to becoming an operating systems expert.

Files are logical units of information created by processes. A disk will usually
contain thousands or even millions of them, each one independent of the others. In
fact, if you think of each file as a kind of address space, you are not that far off, ex-
cept that they are used to model the disk instead of modeling the RAM.

Processes can read existing files and create new ones if need be. Information
stored in files must be persistent, that is, not be affected by process creation and
termination. A file should disappear only when its owner explicitly removes it.
Although operations for reading and writing files are the most common ones, there
exist many others, some of which we will examine below.

Files are managed by the operating system. How they are structured, named,
accessed, used, protected, implemented, and managed are major topics in operating
system design. As a whole, that part of the operating system dealing with files is
known as the file system and is the subject of this chapter.

From the user’s standpoint, the most important aspect of a file system is how it
appears, in other words, what constitutes a file, how files are named and protected,
what operations are allowed on files, and so on. The details of whether linked lists

SEC. 4.1 FILES 265

or bitmaps are used to keep track of free storage and how many sectors there are in
a logical disk block are of no interest, although they are of great importance to the
designers of the file system. For this reason, we have structured the chapter as sev-
eral sections. The first two are concerned with the user interface to files and direc-
tories, respectively. Then comes a detailed discussion of how the file system is im-
plemented and managed. Finally, we give some examples of real file systems.

4.1 FILES

In the following pages we will look at files from the user’s point of view, that
is, how they are used and what properties they have.

4.1.1 File Naming

A file is an abstraction mechanism. It provides a way to store information on
the disk and read it back later. This must be done in such a way as to shield the
user from the details of how and where the information is stored, and how the disks
actually work.

Probably the most important characteristic of any abstraction mechanism is the
way the objects being managed are named, so we will start our examination of file
systems with the subject of file naming. When a process creates a file, it gives the
file a name. When the process terminates, the file continues to exist and can be ac-
cessed by other processes using its name.

The exact rules for file naming vary somewhat from system to system, but all
current operating systems allow strings of one to eight letters as legal file names.
Thus andrea, bruce, and cathy are possible file names. Frequently digits and spe-
cial characters are also permitted, so names like 2, urgent!, and Fig.2-14 are often
valid as well. Many file systems support names as long as 255 characters.

Some file systems distinguish between upper- and lowercase letters, whereas
others do not. UNIX falls in the first category; the old MS-DOS falls in the sec-
ond. (As an aside, while ancient, MS-DOS is still very widely used in embedded
systems, so it is by no means obsolete.) Thus, a UNIX system can have all of the
following as three distinct files: maria, Maria, and MARIA. In MS-DOS, all these
names refer to the same file.

An aside on file systems is probably in order here. Windows 95 and Windows
98 both used the MS-DOS file system, called FAT-16, and thus inherit many of its
properties, such as how file names are constructed. Windows 98 introduced some
extensions to FAT-16, leading to FAT-32, but these two are quite similar. In addi-
tion, Windows NT, Windows 2000, Windows XP, Windows Vista, Windows 7, and
Windows 8 all still support both FAT file systems, which are really obsolete now.
However, these newer operating systems also have a much more advanced native
file system (NTFS) that has different properties (such as file names in Unicode). In

266 FILE SYSTEMS CHAP. 4

fact, there is second file system for Windows 8, known as ReFS (or Resilient File
System), but it is targeted at the server version of Windows 8. In this chapter,
when we refer to the MS-DOS or FAT file systems, we mean FAT-16 and FAT-32
as used on Windows unless specified otherwise. We will discuss the FAT file sys-
tems later in this chapter and NTFS in Chap. 12, where we will examine Windows
8 in detail. Incidentally, there is also a new FAT-like file system, known as exFAT
file system, a Microsoft extension to FAT-32 that is optimized for flash drives and
large file systems. Exfat is the only modern Microsoft file system that OS X can
both read and write.

Many operating systems support two-part file names, with the two parts sepa-
rated by a period, as in prog.c. The part following the period is called the file
extension and usually indicates something about the file. In MS-DOS, for ex-
ample, file names are 1 to 8 characters, plus an optional extension of 1 to 3 charac-
ters. In UNIX, the size of the extension, if any, is up to the user, and a file may
even have two or more extensions, as in homepage.html.zip, where .html indicates
a Web page in HTML and .zip indicates that the file (homepage.html) has been
compressed using the zip program. Some of the more common file extensions and
their meanings are shown in Fig. 4-1.

Extension Meaning

.bak Backup file

.c C source program

.gif Compuserve Graphical Interchange Format image
.hip Help file

.html World Wide Web HyperText Markup Language document
.ipg Still picture encoded with the JPEG standard
.mp3 Music encoded in MPEG layer 3 audio format
.mpg Movie encoded with the MPEG standard

.0 Object file (compiler output, not yet linked)

.pdf Portable Document Format file

.ps PostScript file

tex Input for the TEX formatting program

Axt General text file

.Zip Compressed archive

Figure 4-1. Some typical file extensions.

In some systems (e.g., all flavors of UNIX) file extensions are just conventions
and are not enforced by the operating system. A file named file.txt might be some
kind of text file, but that name is more to remind the owner than to convey any ac-
tual information to the computer. On the other hand, a C compiler may actually

SEC. 4.1 FILES 267

insist that files it is to compile end in .c, and it may refuse to compile them if they
do not. However, the operating system does not care.

Conventions like this are especially useful when the same program can handle
several different kinds of files. The C compiler, for example, can be given a list of
several files to compile and link together, some of them C files and some of them
assembly-language files. The extension then becomes essential for the compiler to
tell which are C files, which are assembly files, and which are other files.

In contrast, Windows is aware of the extensions and assigns meaning to them.
Users (or processes) can register extensions with the operating system and specify
for each one which program “owns” that extension. When a user double clicks on
a file name, the program assigned to its file extension is launched with the file as
parameter. For example, double clicking on file.docx starts Microsoft Word with
file.docx as the initial file to edit.

4.1.2 File Structure

Files can be structured in any of several ways. Three common possibilities are
depicted in Fig. 4-2. The file in Fig. 4-2(a) is an unstructured sequence of bytes.
In effect, the operating system does not know or care what is in the file. All it sees
are bytes. Any meaning must be imposed by user-level programs. Both UNIX and
Windows use this approach.

1 Byte 1 Record

Zd s

|| Ant || Fox || Pig ||

” Cat ” Cow ” Dog ” ” Goat ” Lion ” Owl ” ” Pony ” Rat ”Worm”

|| Hen || Ibis || Lamb”

(@) (b) (©

Figure 4-2. Three kinds of files. (a) Byte sequence. (b) Record sequence.
(c) Tree.

Having the operating system regard files as nothing more than byte sequences
provides the maximum amount of flexibility. User programs can put anything they
want in their files and name them any way that they find convenient. The operating
system does not help, but it also does not get in the way. For users who want to do

268 FILE SYSTEMS CHAP. 4

unusual things, the latter can be very important. All versions of UNIX (including
Linux and OS X) and Windows use this file model.

The first step up in structure isillustrated in Fig. 4-2(b). In this model, a file is
a sequence of fixed-length records, each with some internal structure. Central to
the idea of a file being a sequence of records is the idea that the read operation re-
turns one record and the write operation overwrites or appends one record. As a
historical note, in decades gone by, when the 80-column punched card was king of
the mountain, many (mainframe) operating systems based their file systems on
files consisting of 80-character records, in effect, card images. These systems also
supported files of 132-character records, which were intended for the line printer
(which in those days were big chain printers having 132 columns). Programs read
input in units of 80 characters and wrote it in units of 132 characters, although the
final 52 could be spaces, of course. No current general-purpose system uses this
model as its primary file system any more, but back in the days of 80-column
punched cards and 132-character line printer paper this was a common model on
mainframe computers.

The third kind of file structure is shown in Fig. 4-2(c). In this organization, a
file consists of a tree of records, not necessarily all the same length, each con-
taining a key field in a fixed position in the record. The tree is sorted on the key
field, to allow rapid searching for a particular key.

The basic operation here is not to get the “next” record, although that is also
possible, but to get the record with a specific key. For the zoo file of Fig. 4-2(c),
one could ask the system to get the record whose key is pony, for example, without
worrying about its exact position in the file. Furthermore, new records can be add-
ed to the file, with the operating system, and not the user, deciding where to place
them. This type of file is clearly quite different from the unstructured byte streams
used in UNIX and Windows and is used on some large mainframe computers for
commercial data processing.

4.1.3 File Types

Many operating systems support several types of files. UNIX (again, including
OS X) and Windows, for example, have regular files and directories. UNIX also
has character and block special files. Regular files are the ones that contain user
information. All the files of Fig. 4-2 are regular files. Directories are system files
for maintaining the structure of the file system. We will study directories below.
Character special files are related to input/output and used to model serial I/O de-
vices, such as terminals, printers, and networks. Block special files are used to
model disks. In this chapter we will be primarily interested in regular files.

Regular files are generally either ASCII files or binary files. ASCII files con-
sist of lines of text. In some systems each line is terminated by a carriage return
character. In others, the line feed character is used. Some systems (e.g., Windows)
use both. Lines need not all be of the same length.

SEC. 4.1 FILES 269

The great advantage of ASCII files is that they can be displayed and printed as
is, and they can be edited with any text editor. Furthermore, if large numbers of
programs use ASCII files for input and output, it is easy to connect the output of
one program to the input of another, as in shell pipelines. (The interprocess
plumbing is not any easier, but interpreting the information certainly is if a stan-
dard convention, such as ASCII, is used for expressing it.)

Other files are binary, which just means that they are not ASCII files. Listing
them on the printer gives an incomprehensible listing full of random junk. Usually,
they have some internal structure known to programs that use them.

For example, in Fig. 4-3(a) we see a simple executable binary file taken from
an early version of UNIX. Although technically the file is just a sequence of bytes,
the operating system will execute a file only if it has the proper format. It has five
sections: header, text, data, relocation bits, and symbol table. The header starts
with a so-called magic number, identifying the file as an executable file (to pre-
vent the accidental execution of a file not in this format). Then come the sizes of
the various pieces of the file, the address at which execution starts, and some flag
bits. Following the header are the text and data of the program itself. These are
loaded into memory and relocated using the relocation bits. The symbol table is
used for debugging.

Our second example of a binary file is an archive, also from UNIX. It consists
of a collection of library procedures (modules) compiled but not linked. Each one
is prefaced by a header telling its name, creation date, owner, protection code, and
size. Just as with the executable file, the module headers are full of binary num-
bers. Copying them to the printer would produce complete gibberish.

Every operating system must recognize at least one file type: its own executa-
ble file; some recognize more. The old TOPS-20 system (for the DECsystem 20)
went so far as to examine the creation time of any file to be executed. Then it loca-
ted the source file and saw whether the source had been modified since the binary
was made. If it had been, it automatically recompiled the source. In UNIX terms,
the make program had been built into the shell. The file extensions were manda-
tory, so it could tell which binary program was derived from which source.

Having strongly typed files like this causes problems whenever the user does
anything that the system designers did not expect. Consider, as an example, a sys-
tem in which program output files have extension .dat (data files). If a user writes
a program formatter that reads a .c file (C program), transforms it (e.g., by convert-
ing it to a standard indentation layout), and then writes the transformed file as out-
put, the output file will be of type .dat. If the user tries to offer this to the C compi-
ler to compile it, the system will refuse because it has the wrong extension. At-
tempts to copy file.dat to file.c will be rejected by the system as invalid (to protect
the user against mistakes).

While this kind of “user friendliness” may help novices, it drives experienced
users up the wall since they have to devote considerable effort to circumventing the
operating system’s idea of what is reasonable and what is not.

270 FILE SYSTEMS CHAP. 4

_ / Module
Magic number Head name
eader
Text size
Data size Date
g BSS size
j .
Koy Symbol table size n?géeu?; Owner
Entry point Protection
Size
Flags
T 9 Header
~ Text ~
Object
module
T Data T Header
A Relocation A
T bits T
Object
module
A Symbol A
T table T

(a) (b)

Figure 4-3. (a) An executable file. (b) An archive.

4.14 File Access

Early operating systems provided only one kind of file access: sequential
access. In these systems, a process could read all the bytes or records in a file in
order, starting at the beginning, but could not skip around and read them out of
order. Sequential files could be rewound, however, so they could be read as often
as needed. Sequential files were convenient when the storage medium was mag-
netic tape rather than disk.

When disks came into use for storing files, it became possible to read the bytes
or records of a file out of order, or to access records by key rather than by position.
Files whose bytes or records can be read in any order are called random-access
files. They are required by many applications.

SEC. 4.1 FILES 271

Random access files are essential for many applications, for example, database
systems. If an airline customer calls up and wants to reserve a seat on a particular
flight, the reservation program must be able to access the record for that flight
without having to read the records for thousands of other flights first.

Two methods can be used for specifying where to start reading. In the first
one, every read operation gives the position in the file to start reading at. In the
second one, a special operation, seek, is provided to set the current position. After
a seek, the file can be read sequentially from the now-current position. The latter
method is used in UNIX and Windows.

4.1.5 File Attributes

Every file has a name and its data. In addition, all operating systems associate
other information with each file, for example, the date and time the file was last
modified and the file’s size. We will call these extra items the file’s attributes.
Some people call them metadata. The list of attributes varies considerably from
system to system. The table of Fig. 4-4 shows some of the possibilities, but other
ones also exist. No existing system has all of these, but each one is present in
some system.

The first four attributes relate to the file’s protection and tell who may access it
and who may not. All kinds of schemes are possible, some of which we will study
later. In some systems the user must present a password to access a file, in which
case the password must be one of the attributes.

The flags are bits or short fields that control or enable some specific property.
Hidden files, for example, do not appear in listings of all the files. The archive flag
is a bit that keeps track of whether the file has been backed up recently. The back-
up program clears it, and the operating system sets it whenever a file is changed.
In this way, the backup program can tell which files need backing up. The tempo-
rary flag allows a file to be marked for automatic deletion when the process that
created it terminates.

The record-length, key-position, and key-length fields are only present in files
whose records can be looked up using a key. They provide the information required
to find the keys.

The various times keep track of when the file was created, most recently ac-
cessed, and most recently modified. These are useful for a variety of purposes. For
example, a source file that has been modified after the creation of the correspond-
ing object file needs to be recompiled. These fields provide the necessary infor-
mation.

The current size tells how big the file is at present. Some old mainframe oper-
ating systems required the maximum size to be specified when the file was created,
in order to let the operating system reserve the maximum amount of storage in ad-
vance. Workstation and personal-computer operating systems are thankfully clever
enough to do without this feature nowadays.

272

FILE SYSTEMS

Attribute Meaning
Protection Who can access the file and in what way
Password Password needed to access the file
Creator ID of the person who created the file
Owner Current owner
Read-only flag 0 for read/write; 1 for read only
Hidden flag 0 for normal; 1 for do not display in listings
System flag 0 for normal files; 1 for system file
Archive flag 0 for has been backed up; 1 for needs to be backed up

ASClI/binary flag

0 for ASCII file; 1 for binary file

Random access flag

0 for sequential access only; 1 for random access

Temporary flag

0 for normal; 1 for delete file on process exit

Lock flags 0 for unlocked; nonzero for locked
Record length Number of bytes in a record

Key position Offset of the key within each record
Key length Number of bytes in the key field

Creation time

Date and time the file was created

Time of last access

Date and time the file was last accessed

Time of last change

Date and time the file was last changed

Current size

Number of bytes in the file

Maximum size

Number of bytes the file may grow to

Figure 4-4. Some possible file attributes.

CHAP. 4

4.1.6 File Operations

Files exist to store information and allow it to be retrieved later. Different sys-
tems provide different operations to allow storage and retrieval. Below is a dis-
cussion of the most common system calls relating to files.

1. Create. The file is created with no data. The purpose of the call is to
announce that the file is coming and to set some of the attributes.

2. Delete. When the file is no longer needed, it has to be deleted to free
up disk space. There is always a system call for this purpose.

3. Open. Before using a file, a process must open it. The purpose of the
open call is to allow the system to fetch the attributes and list of disk
addresses into main memory for rapid access on later calls.

4. Close. When all the accesses are finished, the attributes and disk ad-
dresses are no longer needed, so the file should be closed to free up
internal table space. Many systems encourage this by imposing a

SEC. 4.1 FILES 273

maximum number of open files on processes. A disk is written in
blocks, and closing a file forces writing of the file’s last block, even
though that block may not be entirely full yet.

5. Read. Data are read from file. Usually, the bytes come from the cur-
rent position. The caller must specify how many data are needed and
must also provide a buffer to put them in.

6. Write. Data are written to the file again, usually at the current posi-
tion. If the current position is the end of the file, the file’s size in-
creases. If the current position is in the middle of the file, existing
data are overwritten and lost forever.

7. Append. This call is a restricted form of write. It can add data only to
the end of the file. Systems that provide a minimal set of system calls
rarely have append, but many systems provide multiple ways of
doing the same thing, and these systems sometimes have append.

8. Seek. For random-access files, a method is needed to specify from
where to take the data. One common approach is a system call, seek,
that repositions the file pointer to a specific place in the file. After this
call has completed, data can be read from, or written to, that position.

9. Get attributes. Processes often need to read file attributes to do their
work. For example, the UNIX make program is commonly used to
manage software development projects consisting of many source
files. When make is called, it examines the modification times of all
the source and object files and arranges for the minimum number of
compilations required to bring everything up to date. To do its job, it
must look at the attributes, namely, the modification times.

10. Set attributes. Some of the attributes are user settable and can be
changed after the file has been created. This system call makes that
possible. The protection-mode information is an obvious example.
Most of the flags also fall in this category.

11. Rename. It frequently happens that a user needs to change the name
of an existing file. This system call makes that possible. It is not al-
ways strictly necessary, because the file can usually be copied to a
new file with the new name, and the old file then deleted.

4.1.7 An Example Program Using File-System Calls

In this section we will examine a simple UNIX program that copies one file
from its source file to a destination file. It is listed in Fig. 4-5. The program has
minimal functionality and even worse error reporting, but it gives a reasonable idea
of how some of the system calls related to files work.

274 FILE SYSTEMS CHAP. 4

/* File copy program. Error checking and reporting is minimal. */

#include <sys/types.h> /* include necessary header files */
#include <fcntl.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char *argv(]); /* ANSI prototype */
#define BUF _SIZE 4096 /* use a buffer size of 4096 bytes */
#define OUTPUT_MODE 0700 /* protection bits for output file */

int main(int argc, char *argv([])

{

int in_fd, out_fd, rd_count, wt_count;
char buffer[BUF _SIZE];

if (argc != 3) exit(1); /* syntax error if argc is not 3 */

/* Open the input file and create the output file */

in_fd = open(argv[1], O_RDONLY); /* open the source file */

if (in_fd < 0) exit(2); /* if it cannot be opened, exit */
out_fd = creat(argv[2], OUTPUT_MODE); /* create the destination file */
if (out_fd < 0) exit(3); /* if it cannot be created, exit */

/* Copy loop */
while (TRUE) {
rd_count = read(in_fd, buffer, BUF _SIZE); /* read a block of data */

if (rd_count <= 0) break; /* if end of file or error, exit loop */
wt_count = write(out_fd, buffer, rd_count); /* write data */
if (wt_count <= 0) exit(4); /* wt_count <= 0 is an error */

}

/* Close the files */

close(in_fd);

close(out_fd);

if (rd_count == 0) /* no error on last read */
exit(0);

else
exit(5); /* error on last read */

Figure 4-5. A simple program to copy a file.

The program, copyfile, can be called, for example, by the command line
copyfile abc xyz

to copy the file abc to xyz. If xyz already exists, it will be overwritten. Otherwise,
it will be created. The program must be called with exactly two arguments, both
legal file names. The first is the source; the second is the output file.

SEC. 4.1 FILES 275

The four #include statements near the top of the program cause a large number
of definitions and function prototypes to be included in the program. These are
needed to make the program conformant to the relevant international standards, but
will not concern us further. The next line is a function prototype for main, some-
thing required by ANSI C, but also not important for our purposes.

The first #define statement is a macro definition that defines the character
string BUF_SIZE as a macro that expands into the number 4096. The program
will read and write in chunks of 4096 bytes. It is considered good programming
practice to give names to constants like this and to use the names instead of the
constants. Not only does this convention make programs easier to read, but it also
makes them easier to maintain. The second #define statement determines who can
access the output file.

The main program is called main, and it has two arguments, argc, and argv.
These are supplied by the operating system when the program is called. The first
one tells how many strings were present on the command line that invoked the pro-
gram, including the program name. It should be 3. The second one is an array of
pointers to the arguments. In the example call given above, the elements of this
array would contain pointers to the following values:

argv[0] = "copyfile"
argv[1] = "abc"
argv[2] = "xyz"

It is via this array that the program accesses its arguments.

Five variables are declared. The first two, in_fd and out_fd, will hold the file
descriptors, small integers returned when a file is opened. The next two, rd_count
and wt_count, are the byte counts returned by the read and write system calls, re-
spectively. The last one, buffer, is the buffer used to hold the data read and supply
the data to be written.

The first actual statement checks argc to see if it is 3. If not, it exits with status
code 1. Any status code other than 0 means that an error has occurred. The status
code is the only error reporting present in this program. A production version
would normally print error messages as well.

Then we try to open the source file and create the destination file. If the source
file is successfully opened, the system assigns a small integer to in_fd, to identify
the file. Subsequent calls must include this integer so that the system knows which
file it wants. Similarly, if the destination is successfully created, our_fd is given a
value to identify it. The second argument to creat sets the protection mode. If ei-
ther the open or the create fails, the corresponding file descriptor is set to —1, and
the program exits with an error code.

Now comes the copy loop. It starts by trying to read in 4 KB of data to buffer.
It does this by calling the library procedure read, which actually invokes the read
system call. The first parameter identifies the file, the second gives the buffer, and
the third tells how many bytes to read. The value assigned to rd_count gives the

276 FILE SYSTEMS CHAP. 4

number of bytes actually read. Normally, this will be 4096, except if fewer bytes
are remaining in the file. When the end of the file has been reached, it will be 0. If
rd_count is ever zero or negative, the copying cannot continue, so the break state-
ment is executed to terminate the (otherwise endless) loop.

The call to write outputs the buffer to the destination file. The first parameter
identifies the file, the second gives the buffer, and the third tells how many bytes to
write, analogous to read. Note that the byte count is the number of bytes actually
read, not BUF_SIZE. This point is important because the last read will not return
4096 unless the file just happens to be a multiple of 4 KB.

When the entire file has been processed, the first call beyond the end of file
will return O to rd_count, which will make it exit the loop. At this point the two
files are closed and the program exits with a status indicating normal termination.

Although the Windows system calls are different from those of UNIX, the gen-
eral structure of a command-line Windows program to copy a file is moderately
similar to that of Fig. 4-5. We will examine the Windows 8§ calls in Chap. 11.

4.2 DIRECTORIES

To keep track of files, file systems normally have directories or folders, which
are themselves files. In this section we will discuss directories, their organization,
their properties, and the operations that can be performed on them.

4.2.1 Single-Level Directory Systems

The simplest form of directory system is having one directory containing all
the files. Sometimes it is called the root directory, but since it is the only one, the
name does not matter much. On early personal computers, this system was com-
mon, in part because there was only one user. Interestingly enough, the world’s
first supercomputer, the CDC 6600, also had only a single directory for all files,
even though it was used by many users at once. This decision was no doubt made
to keep the software design simple.

An example of a system with one directory is given in Fig. 4-6. Here the di-
rectory contains four files. The advantages of this scheme are its simplicity and the
ability to locate files quickly —there is only one place to look, after all. It is some-
times still used on simple embedded devices such as digital cameras and some
portable music players.

4.2.2 Hierarchical Directory Systems
The single level is adequate for very simple dedicated applications (and was

even used on the first personal computers), but for modern users with thousands of
files, it would be impossible to find anything if all files were in a single directory.

SEC. 4.2 DIRECTORIES 277

«Root directory

BE O

Figure 4-6. A single-level directory system containing four files.

Consequently, a way is needed to group related files together. A professor, for ex-
ample, might have a collection of files that together form a book that he is writing,
a second collection containing student programs submitted for another course, a
third group containing the code of an advanced compiler-writing system he is
building, a fourth group containing grant proposals, as well as other files for elec-
tronic mail, minutes of meetings, papers he is writing, games, and so on.

What is needed is a hierarchy (i.e., a tree of directories). With this approach,
there can be as many directories as are needed to group the files in natural ways.
Furthermore, if multiple users share a common file server, as is the case on many
company networks, each user can have a private root directory for his or her own
hierarchy. This approach is shown in Fig. 4-7. Here, the directories A, B, and C
contained in the root directory each belong to a different user, two of whom have
created subdirectories for projects they are working on.

. —~—Root directory

Figure 4-7. A hierarchical directory system.

The ability for users to create an arbitrary number of subdirectories provides a
powerful structuring tool for users to organize their work. For this reason, nearly
all modern file systems are organized in this manner.

4.2.3 Path Names

When the file system is organized as a directory tree, some way is needed for
specifying file names. Two different methods are commonly used. In the first
method, each file is given an absolute path name consisting of the path from the

278 FILE SYSTEMS CHAP. 4

root directory to the file. As an example, the path /usr/ast/mailbox means that the
root directory contains a subdirectory usr, which in turn contains a subdirectory
ast, which contains the file mailbox. Absolute path names always start at the root
directory and are unique. In UNIX the components of the path are separated by /.
In Windows the separator is \. In MULTICS it was >. Thus, the same path name
would be written as follows in these three systems:

Windows \usr\ast\mailbox
UNIX /usr/ast/mailbox
MULTICS >usr>ast>mailbox

No matter which character is used, if the first character of the path name is the sep-
arator, then the path is absolute.

The other kind of name is the relative path name. This is used in conjunction
with the concept of the working directory (also called the current directory). A
user can designate one directory as the current working directory, in which case all
path names not beginning at the root directory are taken relative to the working di-
rectory. For example, if the current working directory is /usr/ast, then the file
whose absolute path is /usr/ast/mailbox can be referenced simply as mailbox. In
other words, the UNIX command

cp /usr/ast/mailbox /usr/ast/mailbox.bak
and the command
cp mailbox mailbox.bak

do exactly the same thing if the working directory is /usr/ast. The relative form is
often more convenient, but it does the same thing as the absolute form.

Some programs need to access a specific file without regard to what the work-
ing directory is. In that case, they should always use absolute path names. For ex-
ample, a spelling checker might need to read /usr/lib/dictionary to do its work. It
should use the full, absolute path name in this case because it does not know what
the working directory will be when it is called. The absolute path name will always
work, no matter what the working directory is.

Of course, if the spelling checker needs a large number of files from /usr/lib,
an alternative approach is for it to issue a system call to change its working direc-
tory to /usr/lib, and then use just dictionary as the first parameter to open. By ex-
plicitly changing the working directory, it knows for sure where it is in the direc-
tory tree, so it can then use relative paths.

Each process has its own working directory, so when it changes its working di-
rectory and later exits, no other processes are affected and no traces of the change
are left behind in the file system. In this way, it is always perfectly safe for a proc-
ess to change its working directory whenever it finds that to be convenient. On the
other hand, if a library procedure changes the working directory and does not
change back to where it was when it is finished, the rest of the program may not

SEC. 4.2 DIRECTORIES 279

work since its assumption about where it is may now suddenly be invalid. For this
reason, library procedures rarely change the working directory, and when they
must, they always change it back again before returning.

Most operating systems that support a hierarchical directory system have two
special entries in every directory, “.” and *“..”, generally pronounced “dot” and
“dotdot.” Dot refers to the current directory; dotdot refers to its parent (except in
the root directory, where it refers to itself). To see how these are used, consider the
UNIX file tree of Fig.4-8. A certain process has /usr/ast as its working directory.
It can use .. to go higher up the tree. For example, it can copy the file /usr/lib/dic-
tionary to its own directory using the command

cp ../lib/dictionary .

The first path instructs the system to go upward (to the usr directory), then to go
down to the directory [ib to find the file dictionary.

/

bin |<— Root directory
etc
lib
usr
tmp
bin etc lib usr tmp

ast
jim
lib

ast lib jim

- /ust/jim
dict.

Figure 4-8. A UNIX directory tree.

The second argument (dot) names the current directory. When the ¢cp command
gets a directory name (including dot) as its last argument, it copies all the files to

280 FILE SYSTEMS CHAP. 4

that directory. Of course, a more normal way to do the copy would be to use the
full absolute path name of the source file:

cp /usr/lib/dictionary .

Here the use of dot saves the user the trouble of typing dictionary a second time.
Nevertheless, typing

cp /usr/lib/dictionary dictionary
also works fine, as does
cp /usr/lib/dictionary /usr/ast/dictionary

All of these do exactly the same thing.
4.2.4 Directory Operations

The allowed system calls for managing directories exhibit more variation from
system to system than system calls for files. To give an impression of what they
are and how they work, we will give a sample (taken from UNIX).

1. Create. A directory is created. It is empty except for dot and dotdot,
which are put there automatically by the system (or in a few cases, by
the mkdir program).

2. Delete. A directory is deleted. Only an empty directory can be delet-
ed. A directory containing only dot and dotdot is considered empty
as these cannot be deleted.

3. Opendir. Directories can be read. For example, to list all the files in a
directory, a listing program opens the directory to read out the names
of all the files it contains. Before a directory can be read, it must be
opened, analogous to opening and reading a file.

4. Closedir. When a directory has been read, it should be closed to free
up internal table space.

5. Readdir. This call returns the next entry in an open directory. For-
merly, it was possible to read directories using the usual read system
call, but that approach has the disadvantage of forcing the pro-
grammer to know and deal with the internal structure of directories.
In contrast, readdir always returns one entry in a standard format, no
matter which of the possible directory structures is being used.

6. Rename. In many respects, directories are just like files and can be
renamed the same way files can be.

7. Link. Linking is a technique that allows a file to appear in more than
one directory. This system call specifies an existing file and a path

SEC. 4.2 DIRECTORIES 281

name, and creates a link from the existing file to the name specified
by the path. In this way, the same file may appear in multiple direc-
tories. A link of this kind, which increments the counter in the file’s
i-node (to keep track of the number of directory entries containing the
file), is sometimes called a hard link.

8. Unlink. A directory entry is removed. If the file being unlinked is
only present in one directory (the normal case), it is removed from the
file system. If it is present in multiple directories, only the path name
specified is removed. The others remain. In UNIX, the system call
for deleting files (discussed earlier) is, in fact, unlink.

The above list gives the most important calls, but there are a few others as well, for
example, for managing the protection information associated with a directory.

A variant on the idea of linking files is the symbolic link. Instead, of having
two names point to the same internal data structure representing a file, a name can
be created that points to a tiny file naming another file. When the first file is used,
for example, opened, the file system follows the path and finds the name at the end.
Then it starts the lookup process all over using the new name. Symbolic links have
the advantage that they can cross disk boundaries and even name files on remote
computers. Their implementation is somewhat less efficient than hard links though.

4.3 FILE-SYSTEM IMPLEMENTATION

Now it is time to turn from the user’s view of the file system to the imple-
mentor’s view. Users are concerned with how files are named, what operations are
allowed on them, what the directory tree looks like, and similar interface issues.
Implementors are interested in how files and directories are stored, how disk space
is managed, and how to make everything work efficiently and reliably. In the fol-
lowing sections we will examine a number of these areas to see what the issues and
trade-offs are.

4.3.1 File-System Layout

File systems are stored on disks. Most disks can be divided up into one or
more partitions, with independent file systems on each partition. Sector O of the
disk is called the MBR (Master Boot Record) and is used to boot the computer.
The end of the MBR contains the partition table. This table gives the starting and
ending addresses of each partition. One of the partitions in the table is marked as
active. When the computer is booted, the BIOS reads in and executes the MBR.
The first thing the MBR program does is locate the active partition, read in its first
block, which is called the boot block, and execute it. The program in the boot
block loads the operating system contained in that partition. For uniformity, every

282 FILE SYSTEMS CHAP. 4

partition starts with a boot block, even if it does not contain a bootable operating
system. Besides, it might contain one in the future.

Other than starting with a boot block, the layout of a disk partition varies a lot
from file system to file system. Often the file system will contain some of the items
shown in Fig. 4-9. The first one is the superblock. It contains all the key parame-
ters about the file system and is read into memory when the computer is booted or
the file system is first touched. Typical information in the superblock includes a
magic number to identify the file-system type, the number of blocks in the file sys-
tem, and other key administrative information.

Entire disk
Partition table Disk partition \
MBR
Boot block | Superblock | Free space mgmt I-nodes Root dir Files and directories

Figure 4-9. A possible file-system layout.

Next might come information about free blocks in the file system, for example
in the form of a bitmap or a list of pointers. This might be followed by the i-nodes,
an array of data structures, one per file, telling all about the file. After that might
come the root directory, which contains the top of the file-system tree. Finally, the
remainder of the disk contains all the other directories and files.

4.3.2 Implementing Files

Probably the most important issue in implementing file storage is keeping
track of which disk blocks go with which file. Various methods are used in dif-
ferent operating systems. In this section, we will examine a few of them.

Contiguous Allocation

The simplest allocation scheme is to store each file as a contiguous run of disk
blocks. Thus on a disk with 1-KB blocks, a 50-KB file would be allocated 50 con-
secutive blocks. With 2-KB blocks, it would be allocated 25 consecutive blocks.

We see an example of contiguous storage allocation in Fig. 4-10(a). Here the
first 40 disk blocks are shown, starting with block O on the left. Initially, the disk

SEC. 4.3 FILE-SYSTEM IMPLEMENTATION 283

was empty. Then a file A, of length four blocks, was written to disk starting at the
beginning (block 0). After that a six-block file, B, was written starting right after
the end of file A.

Note that each file begins at the start of a new block, so that if file A was really
3% blocks, some space is wasted at the end of the last block. In the figure, a total
of seven files are shown, each one starting at the block following the end of the
previous one. Shading is used just to make it easier to tell the files apart. It has no
actual significance in terms of storage.

File A File C File E File G
(4 blocks) (6 blocks) (12 blocks) (3 blocks)
— — r 3 —
HEEEEEEEEEEEEENEENEEEEEEEEEEEEEEEEENEEEEN
- [-
File B File D File F
(3 blocks) (5 blocks) (6 blocks)
(a)
(File A) (File C) (File E) (File G)

— — r 3 —
HEEEESNEEEEEEEEEEEEENEEEEEEEEEEEEEEEEEEENS
- — - — - —

File B 5 Free blocks 6 Free blocks

(b)

Figure 4-10. (a) Contiguous allocation of disk space for seven files. (b) The
state of the disk after files D and F have been removed.

Contiguous disk-space allocation has two significant advantages. First, it is
simple to implement because keeping track of where a file’s blocks are is reduced
to remembering two numbers: the disk address of the first block and the number of
blocks in the file. Given the number of the first block, the number of any other
block can be found by a simple addition.

Second, the read performance is excellent because the entire file can be read
from the disk in a single operation. Only one seek is needed (to the first block).
After that, no more seeks or rotational delays are needed, so data come in at the
full bandwidth of the disk. Thus contiguous allocation is simple to implement and
has high performance.

Unfortunately, contiguous allocation also has a very serious drawback: over the
course of time, the disk becomes fragmented. To see how this comes about, exam-
ine Fig. 4-10(b). Here two files, D and F, have been removed. When a file is re-
moved, its blocks are naturally freed, leaving a run of free blocks on the disk. The
disk is not compacted on the spot to squeeze out the hole, since that would involve
copying all the blocks following the hole, potentially millions of blocks, which

284 FILE SYSTEMS CHAP. 4

would take hours or even days with large disks. As a result, the disk ultimately
consists of files and holes, as illustrated in the figure.

Initially, this fragmentation is not a problem, since each new file can be written
at the end of disk, following the previous one. However, eventually the disk will fill
up and it will become necessary to either compact the disk, which is prohibitively
expensive, or to reuse the free space in the holes. Reusing the space requires main-
taining a list of holes, which is doable. However, when a new file is to be created,
it is necessary to know its final size in order to choose a hole of the correct size to
place it in.

Imagine the consequences of such a design. The user starts a word processor in
order to create a document. The first thing the program asks is how many bytes the
final document will be. The question must be answered or the program will not
continue. If the number given ultimately proves too small, the program has to ter-
minate prematurely because the disk hole is full and there is no place to put the rest
of the file. If the user tries to avoid this problem by giving an unrealistically large
number as the final size, say, 1 GB, the editor may be unable to find such a large
hole and announce that the file cannot be created. Of course, the user would be
free to start the program again and say 500 MB this time, and so on until a suitable
hole was located. Still, this scheme is not likely to lead to happy users.

However, there is one situation in which contiguous allocation is feasible and,
in fact, still used: on CD-ROMs. Here all the file sizes are known in advance and
will never change during subsequent use of the CD-ROM file system.

The situation with DVDs is a bit more complicated. In principle, a 90-min
movie could be encoded as a single file of length about 4.5 GB, but the file system
used, UDF (Universal Disk Format), uses a 30-bit number to represent file
length, which limits files to 1 GB. As a consequence, DVD movies are generally
stored as three or four 1-GB files, each of which is contiguous. These physical
pieces of the single logical file (the movie) are called extents.

As we mentioned in Chap. 1, history often repeats itself in computer science as
new generations of technology occur. Contiguous allocation was actually used on
magnetic-disk file systems years ago due to its simplicity and high performance
(user friendliness did not count for much then). Then the idea was dropped due to
the nuisance of having to specify final file size at file-creation time. But with the
advent of CD-ROMs, DVDs, Blu-rays, and other write-once optical media, sud-
denly contiguous files were a good idea again. It is thus important to study old
systems and ideas that were conceptually clean and simple because they may be
applicable to future systems in surprising ways.

Linked-List Allocation
The second method for storing files is to keep each one as a linked list of disk

blocks, as shown in Fig. 4-11. The first word of each block is used as a pointer to
the next one. The rest of the block is for data.

SEC. 4.3 FILE-SYSTEM IMPLEMENTATION 285

File A

File File File File File
block block block block block
0 1 2 3 4

Physical 4 7 2 10 12
block

File B

File File File File
block block block block
0 1 2 3

Physical 6 3 11 14
block

Figure 4-11. Storing a file as a linked list of disk blocks.

Unlike contiguous allocation, every disk block can be used in this method. No
space is lost to disk fragmentation (except for internal fragmentation in the last
block). Also, it is sufficient for the directory entry to merely store the disk address
of the first block. The rest can be found starting there.

On the other hand, although reading a file sequentially is straightforward, ran-
dom access is extremely slow. To get to block n, the operating system has to start
at the beginning and read the n — 1 blocks prior to it, one at a time. Clearly, doing
so many reads will be painfully slow.

Also, the amount of data storage in a block is no longer a power of two be-
cause the pointer takes up a few bytes. While not fatal, having a peculiar size is
less efficient because many programs read and write in blocks whose size is a pow-
er of two. With the first few bytes of each block occupied by a pointer to the next
block, reads of the full block size require acquiring and concatenating information
from two disk blocks, which generates extra overhead due to the copying.

Linked-List Allocation Using a Table in Memory

Both disadvantages of the linked-list allocation can be eliminated by taking the
pointer word from each disk block and putting it in a table in memory. Figure 4-12
shows what the table looks like for the example of Fig. 4-11. In both figures, we
have two files. File A uses disk blocks 4, 7, 2, 10, and 12, in that order, and file B
uses disk blocks 6, 3, 11, and 14, in that order. Using the table of Fig. 4-12, we can
start with block 4 and follow the chain all the way to the end. The same can be
done starting with block 6. Both chains are terminated with a special marker (e.g.,
—1) that is not a valid block number. Such a table in main memory is called a FAT
(File Allocation Table).

286 FILE SYSTEMS CHAP. 4

Physical
block
0
1
2 10
3 11
4 7 —~—— File A starts here
5
6 3 —~—— File B starts here
7 2
8
9
10 12
11 14
12 1
13
14 1
15 —~—— Unused block

Figure 4-12. Linked-list allocation using a file-allocation table in main memory.

Using this organization, the entire block is available for data. Furthermore, ran-
dom access is much easier. Although the chain must still be followed to find a
given offset within the file, the chain is entirely in memory, so it can be followed
without making any disk references. Like the previous method, it is sufficient for
the directory entry to keep a single integer (the starting block number) and still be
able to locate all the blocks, no matter how large the file is.

The primary disadvantage of this method is that the entire table must be in
memory all the time to make it work. With a 1-TB disk and a 1-KB block size, the
table needs 1 billion entries, one for each of the 1 billion disk blocks. Each entry
has to be a minimum of 3 bytes. For speed in lookup, they should be 4 bytes. Thus
the table will take up 3 GB or 2.4 GB of main memory all the time, depending on
whether the system is optimized for space or time. Not wildly practical. Clearly the
FAT idea does not scale well to large disks. It was the original MS-DOS file sys-
tem and is still fully supported by all versions of Windows though.

I-nodes

Our last method for keeping track of which blocks belong to which file is to
associate with each file a data structure called an i-node (index-node), which lists
the attributes and disk addresses of the file’s blocks. A simple example is depicted
in Fig. 4-13. Given the i-node, it is then possible to find all the blocks of the file.

SEC. 4.3 FILE-SYSTEM IMPLEMENTATION 287

The big advantage of this scheme over linked files using an in-memory table is that
the i-node need be in memory only when the corresponding file is open. If each i-
node occupies n bytes and a maximum of k files may be open at once, the total
memory occupied by the array holding the i-nodes for the open files is only kn
bytes. Only this much space need be reserved in advance.

File Attributes

Address of disk block 0 —>

Address of disk block 1 —

Address of disk block 2 —

Address of disk block 3 —

Address of disk block 4 —

Address of disk block 5 —

Address of disk block 6 —

Address of disk block 7 —

Address of block of pointers

Disk block

containing

additional
disk addresses

Figure 4-13. An example i-node.

This array is usually far smaller than the space occupied by the file table de-
scribed in the previous section. The reason is simple. The table for holding the
linked list of all disk blocks is proportional in size to the disk itself. If the disk has
n blocks, the table needs n entries. As disks grow larger, this table grows linearly
with them. In contrast, the i-node scheme requires an array in memory whose size
is proportional to the maximum number of files that may be open at once. It does
not matter if the disk is 100 GB, 1000 GB, or 10,000 GB.

One problem with i-nodes is that if each one has room for a fixed number of
disk addresses, what happens when a file grows beyond this limit? One solution is
to reserve the last disk address not for a data block, but instead for the address of a
block containing more disk-block addresses, as shown in Fig. 4-13. Even more ad-
vanced would be two or more such blocks containing disk addresses or even disk
blocks pointing to other disk blocks full of addresses. We will come back to i-
nodes when studying UNIX in Chap. 10. Similarly, the Windows NTFS file sys-
tem uses a similar idea, only with bigger i-nodes that can also contain small files.

288 FILE SYSTEMS CHAP. 4
4.3.3 Implementing Directories

Before a file can be read, it must be opened. When a file is opened, the operat-
ing system uses the path name supplied by the user to locate the directory entry on
the disk. The directory entry provides the information needed to find the disk
blocks. Depending on the system, this information may be the disk address of the
entire file (with contiguous allocation), the number of the first block (both link-
ed-list schemes), or the number of the i-node. In all cases, the main function of the
directory system is to map the ASCII name of the file onto the information needed
to locate the data.

A closely related issue is where the attributes should be stored. Every file sys-
tem maintains various file attributes, such as each file’s owner and creation time,
and they must be stored somewhere. One obvious possibility is to store them di-
rectly in the directory entry. Some systems do precisely that. This option is shown
in Fig. 4-14(a). In this simple design, a directory consists of a list of fixed-size en-
tries, one per file, containing a (fixed-length) file name, a structure of the file at-
tributes, and one or more disk addresses (up to some maximum) telling where the
disk blocks are.

games i attributes games i 7 I:I
mail I attributes mail } 4+
| . |
news i attributes news i ~\|:|
work | attributes work ; \\
(a) (b) Data structure
containing the
attributes

Figure 4-14. (a) A simple directory containing fixed-size entries with the disk addresses
and attributes in the directory entry. (b) A directory in which each entry just
refers to an i-node.

For systems that use i-nodes, another possibility for storing the attributes is in
the i-nodes, rather than in the directory entries. In that case, the directory entry can
be shorter: just a file name and an i-node number. This approach is illustrated in
Fig. 4-14(b). As we shall see later, this method has some advantages over putting
them in the directory entry.

So far we have made the assumption that files have short, fixed-length names.
In MS-DOS files have a 1-8 character base name and an optional extension of 1-3
characters. In UNIX Version 7, file names were 1-14 characters, including any ex-
tensions. However, nearly all modern operating systems support longer, vari-
able-length file names. How can these be implemented?

SEC. 4.3 FILE-SYSTEM IMPLEMENTATION 289

The simplest approach is to set a limit on file-name length, typically 255 char-
acters, and then use one of the designs of Fig. 4-14 with 255 characters reserved
for each file name. This approach is simple, but wastes a great deal of directory
space, since few files have such long names. For efficiency reasons, a different
structure is desirable.

One alternative is to give up the idea that all directory entries are the same size.
With this method, each directory entry contains a fixed portion, typically starting
with the length of the entry, and then followed by data with a fixed format, usually
including the owner, creation time, protection information, and other attributes.
This fixed-length header is followed by the actual file name, however long it may
be, as shown in Fig. 4-15(a) in big-endian format (e.g., SPARC). In this example
we have three files, project-budget, personnel, and foo. Each file name is termi-
nated by a special character (usually 0), which is represented in the figure by a box
with a cross in it. To allow each directory entry to begin on a word boundary, each
file name is filled out to an integral number of words, shown by shaded boxes in
the figure.

File 1 entry length L Pointer to file 1's name Entry

for one

File 1 attributes File 1 attributes file
Entry r 5 - - —
for one p J Pointer to file 2's name
file e c t - _ _
b u d g File 2 attributes
Ll_® t X |, Pointer to file 3's name

File 2 entry length

File 3 attributes
File 2 attributes

p e r
o n n A
| X J

File 3 entry length

File 3 attributes

flol]ofX

Heap

=[S |=|—~|c|O]|=
olo|o |X|a|~]|o
o|—|o|o|ea

E% o|lo|oc|o|o

(a) (b)

Figure 4-15. Two ways of handling long file names in a directory. (a) In-line.
(b) In a heap.

A disadvantage of this method is that when a file is removed, a variable-sized
gap is introduced into the directory into which the next file to be entered may not
fit. This problem is essentially the same one we saw with contiguous disk files,

290 FILE SYSTEMS CHAP. 4

only now compacting the directory is feasible because it is entirely in memory. An-
other problem is that a single directory entry may span multiple pages, so a page
fault may occur while reading a file name.

Another way to handle variable-length names is to make the directory entries
themselves all fixed length and keep the file names together in a heap at the end of
the directory, as shown in Fig. 4-15(b). This method has the advantage that when
an entry is removed, the next file entered will always fit there. Of course, the heap
must be managed and page faults can still occur while processing file names. One
minor win here is that there is no longer any real need for file names to begin at
word boundaries, so no filler characters are needed after file names in Fig. 4-15(b)
as they are in Fig. 4-15(a).

In all of the designs so far, directories are searched linearly from beginning to
end when a file name has to be looked up. For extremely long directories, linear
searching can be slow. One way to speed up the search is to use a hash table in
each directory. Call the size of the table n. To enter a file name, the name is hashed
onto a value between 0 and n — 1, for example, by dividing it by n and taking the
remainder. Alternatively, the words comprising the file name can be added up and
this quantity divided by n, or something similar.

Either way, the table entry corresponding to the hash code is inspected. If it is
unused, a pointer is placed there to the file entry. File entries follow the hash table.
If that slot is already in use, a linked list is constructed, headed at the table entry
and threading through all entries with the same hash value.

Looking up a file follows the same procedure. The file name is hashed to select
a hash-table entry. All the entries on the chain headed at that slot are checked to
see if the file name is present. If the name is not on the chain, the file is not pres-
ent in the directory.

Using a hash table has the advantage of much faster lookup, but the disadvan-
tage of more complex administration. It is only really a serious candidate in sys-
tems where it is expected that directories will routinely contain hundreds or thou-
sands of files.

A different way to speed up searching large directories is to cache the results
of searches. Before starting a search, a check is first made to see if the file name is
in the cache. If so, it can be located immediately. Of course, caching only works
if a relatively small number of files comprise the majority of the lookups.

4.3.4 Shared Files

When several users are working together on a project, they often need to share
files. As a result, it is often convenient for a shared file to appear simultaneously
in different directories belonging to different users. Figure 4-16 shows the file sys-
tem of Fig. 4-7 again, only with one of C’s files now present in one of B’s direc-
tories as well. The connection between B’s directory and the shared file is called a

SEC. 4.3 FILE-SYSTEM IMPLEMENTATION 291

link. The file system itself is now a Directed Acyclic Graph, or DAG, rather than
a tree. Having the file system be a DAG complicates maintenance, but such is life.

. Root directory

Shared file

Figure 4-16. File system containing a shared file.

Sharing files is convenient, but it also introduces some problems. To start
with, if directories really do contain disk addresses, then a copy of the disk ad-
dresses will have to be made in B’s directory when the file is linked. If either B or
C subsequently appends to the file, the new blocks will be listed only in the direc-
tory of the user doing the append. The changes will not be visible to the other user,
thus defeating the purpose of sharing.

This problem can be solved in two ways. In the first solution, disk blocks are
not listed in directories, but in a little data structure associated with the file itself.
The directories would then point just to the little data structure. This is the ap-
proach used in UNIX (where the little data structure is the i-node).

In the second solution, B links to one of C’s files by having the system create a
new file, of type LINK, and entering that file in B’s directory. The new file con-
tains just the path name of the file to which it is linked. When B reads from the
linked file, the operating system sees that the file being read from is of type LINK,
looks up the name of the file, and reads that file. This approach is called symbolic
linking, to contrast it with traditional (hard) linking.

Each of these methods has its drawbacks. In the first method, at the moment
that B links to the shared file, the i-node records the file’s owner as C. Creating a
link does not change the ownership (see Fig.4-17), but it does increase the link
count in the i-node, so the system knows how many directory entries currently
point to the file.

If C subsequently tries to remove the file, the system is faced with a problem.
If it removes the file and clears the i-node, B will have a directory entry pointing to

292 FILE SYSTEMS CHAP. 4

C's directory B's directory C's directory B's directory
\ \
/ \W4 \
Owner =C Owner =C Owner=C
Count =1 Count =2 Count =1

! ! f
O O O

(@) (b) (©)

Figure 4-17. (a) Situation prior to linking. (b) After the link is created. (c) After
the original owner removes the file.

an invalid i-node. If the i-node is later reassigned to another file, B’s link will
point to the wrong file. The system can see from the count in the i-node that the
file is still in use, but there is no easy way for it to find all the directory entries for
the file, in order to erase them. Pointers to the directories cannot be stored in the i-
node because there can be an unlimited number of directories.

The only thing to do is remove C’s directory entry, but leave the i-node intact,
with count set to 1, as shown in Fig. 4-17(c). We now have a situation in which B
is the only user having a directory entry for a file owned by C. If the system does
accounting or has quotas, C will continue to be billed for the file until B decides to
remove it, if ever, at which time the count goes to 0 and the file is deleted.

With symbolic links this problem does not arise because only the true owner
has a pointer to the i-node. Users who have linked to the file just have path names,
not i-node pointers. When the owner removes the file, it is destroyed. Subsequent
attempts to use the file via a symbolic link will fail when the system is unable to
locate the file. Removing a symbolic link does not affect the file at all.

The problem with symbolic links is the extra overhead required. The file con-
taining the path must be read, then the path must be parsed and followed, compo-
nent by component, until the i-node is reached. All of this activity may require a
considerable number of extra disk accesses. Furthermore, an extra i-node is needed
for each symbolic link, as is an extra disk block to store the path, although if the
path name is short, the system could store it in the i-node itself, as a kind of opti-
mization. Symbolic links have the advantage that they can be used to link to files
on machines anywhere in the world, by simply providing the network address of
the machine where the file resides in addition to its path on that machine.

There is also another problem introduced by links, symbolic or otherwise.
When links are allowed, files can have two or more paths. Programs that start at a
given directory and find all the files in that directory and its subdirectories will
locate a linked file multiple times. For example, a program that dumps all the files

SEC. 4.3 FILE-SYSTEM IMPLEMENTATION 293

in a directory and its subdirectories onto a tape may make multiple copies of a
linked file. Furthermore, if the tape is then read into another machine, unless the
dump program is clever, the linked file will be copied twice onto the disk, instead
of being linked.

4.3.5 Log-Structured File Systems

Changes in technology are putting pressure on current file systems. In particu-
lar, CPUs keep getting faster, disks are becoming much bigger and cheaper (but not
much faster), and memories are growing exponentially in size. The one parameter
that is not improving by leaps and bounds is disk seek time (except for solid-state
disks, which have no seek time).

The combination of these factors means that a performance bottleneck is aris-
ing in many file systems. Research done at Berkeley attempted to alleviate this
problem by designing a completely new kind of file system, LFS (the Log-struc-
tured File System). In this section we will briefly describe how LFS works. For a
more complete treatment, see the original paper on LFS (Rosenblum and Ouster-
hout, 1991).

The idea that drove the LFS design is that as CPUs get faster and RAM memo-
ries get larger, disk caches are also increasing rapidly. Consequently, it is now pos-
sible to satisfy a very substantial fraction of all read requests directly from the
file-system cache, with no disk access needed. It follows from this observation
that in the future, most disk accesses will be writes, so the read-ahead mechanism
used in some file systems to fetch blocks before they are needed no longer gains
much performance.

To make matters worse, in most file systems, writes are done in very small
chunks. Small writes are highly inefficient, since a 50-usec disk write is often pre-
ceded by a 10-msec seek and a 4-msec rotational delay. With these parameters,
disk efficiency drops to a fraction of 1%.

To see where all the small writes come from, consider creating a new file on a
UNIX system. To write this file, the i-node for the directory, the directory block,
the i-node for the file, and the file itself must all be written. While these writes can
be delayed, doing so exposes the file system to serious consistency problems if a
crash occurs before the writes are done. For this reason, the i-node writes are gen-
erally done immediately.

From this reasoning, the LFS designers decided to reimplement the UNIX file
system in such a way as to achieve the full bandwidth of the disk, even in the face
of a workload consisting in large part of small random writes. The basic idea is to
structure the entire disk as a great big log.

Periodically, and when there is a special need for it, all the pending writes
being buffered in memory are collected into a single segment and written to the
disk as a single contiguous segment at the end of the log. A single segment may

294 FILE SYSTEMS CHAP. 4

thus contain i-nodes, directory blocks, and data blocks, all mixed together. At the
start of each segment is a segment summary, telling what can be found in the seg-
ment. If the average segment can be made to be about 1 MB, almost the full band-
width of the disk can be utilized.

In this design, i-nodes still exist and even have the same structure as in UNIX,
but they are now scattered all over the log, instead of being at a fixed position on
the disk. Nevertheless, when an i-node is located, locating the blocks is done in the
usual way. Of course, finding an i-node is now much harder, since its address can-
not simply be calculated from its i-number, as in UNIX. To make it possible to
find i-nodes, an i-node map, indexed by i-number, is maintained. Entry i in this
map points to i-node i on the disk. The map is kept on disk, but it is also cached,
so the most heavily used parts will be in memory most of the time.

To summarize what we have said so far, all writes are initially buffered in
memory, and periodically all the buffered writes are written to the disk in a single
segment, at the end of the log. Opening a file now consists of using the map to
locate the i-node for the file. Once the i-node has been located, the addresses of
the blocks can be found from it. All of the blocks will themselves be in segments,
somewhere in the log.

If disks were infinitely large, the above description would be the entire story.
However, real disks are finite, so eventually the log will occupy the entire disk, at
which time no new segments can be written to the log. Fortunately, many existing
segments may have blocks that are no longer needed. For example, if a file is over-
written, its i-node will now point to the new blocks, but the old ones will still be
occupying space in previously written segments.

To deal with this problem, LFS has a cleaner thread that spends its time scan-
ning the log circularly to compact it. It starts out by reading the summary of the
first segment in the log to see which i-nodes and files are there. It then checks the
current i-node map to see if the i-nodes are still current and file blocks are still in
use. If not, that information is discarded. The i-nodes and blocks that are still in
use go into memory to be written out in the next segment. The original segment is
then marked as free, so that the log can use it for new data. In this manner, the
cleaner moves along the log, removing old segments from the back and putting any
live data into memory for rewriting in the next segment. Consequently, the disk is a
big circular buffer, with the writer thread adding new segments to the front and the
cleaner thread removing old ones from the back.

The bookkeeping here is nontrivial, since when a file block is written back to a
new segment, the i-node of the file (somewhere in the log) must be located,
updated, and put into memory to be written out in the next segment. The i-node
map must then be updated to point to the new copy. Nevertheless, it is possible to
do the administration, and the performance results show that all this complexity is
worthwhile. Measurements given in the papers cited above show that LFS outper-
forms UNIX by an order of magnitude on small writes, while having a per-
formance that is as good as or better than UNIX for reads and large writes.

SEC. 43 FILE-SYSTEM IMPLEMENTATION 295
4.3.6 Journaling File Systems

While log-structured file systems are an interesting idea, they are not widely
used, in part due to their being highly incompatible with existing file systems.
Nevertheless, one of the ideas inherent in them, robustness in the face of failure,
can be easily applied to more conventional file systems. The basic idea here is to
keep a log of what the file system is going to do before it does it, so that if the sys-
tem crashes before it can do its planned work, upon rebooting the system can look
in the log to see what was going on at the time of the crash and finish the job. Such
file systems, called journaling file systems, are actually in use. Microsoft’s NTFS
file system and the Linux ext3 and ReiserFS file systems all use journaling. OS X
offers journaling file systems as an option. Below we will give a brief introduction
to this topic.

To see the nature of the problem, consider a simple garden-variety operation
that happens all the time: removing a file. This operation (in UNIX) requires three
steps:

1. Remove the file from its directory.
2. Release the i-node to the pool of free i-nodes.

3. Return all the disk blocks to the pool of free disk blocks.

In Windows analogous steps are required. In the absence of system crashes, the
order in which these steps are taken does not matter; in the presence of crashes, it
does. Suppose that the first step is completed and then the system crashes. The i-
node and file blocks will not be accessible from any file, but will also not be avail-
able for reassignment; they are just off in limbo somewhere, decreasing the avail-
able resources. If the crash occurs after the second step, only the blocks are lost.

If the order of operations is changed and the i-node is released first, then after
rebooting, the i-node may be reassigned, but the old directory entry will continue
to point to it, hence to the wrong file. If the blocks are released first, then a crash
before the i-node is cleared will mean that a valid directory entry points to an i-
node listing blocks now in the free storage pool and which are likely to be reused
shortly, leading to two or more files randomly sharing the same blocks. None of
these outcomes are good.

What the journaling file system does is first write a log entry listing the three
actions to be completed. The log entry is then written to disk (and for good meas-
ure, possibly read back from the disk to verify that it was, in fact, written cor-
rectly). Only after the log entry has been written, do the various operations begin.
After the operations complete successfully, the log entry is erased. If the system
now crashes, upon recovery the file system can check the log to see if any opera-
tions were pending. If so, all of them can be rerun (multiple times in the event of
repeated crashes) until the file is correctly removed.

296 FILE SYSTEMS CHAP. 4

To make journaling work, the logged operations must be idempotent, which
means they can be repeated as often as necessary without harm. Operations such as
“Update the bitmap to mark i-node k or block n as free” can be repeated until the
cows come home with no danger. Similarly, searching a directory and removing
any entry called foobar is also idempotent. On the other hand, adding the newly
freed blocks from i-node K to the end of the free list is not idempotent since they
may already be there. The more-expensive operation ‘““Search the list of free blocks
and add block 7 to it if it is not already present” is idempotent. Journaling file sys-
tems have to arrange their data structures and loggable operations so they all are
idempotent. Under these conditions, crash recovery can be made fast and secure.

For added reliability, a file system can introduce the database concept of an
atomic transaction. When this concept is used, a group of actions can be brack-
eted by the begin transaction and end transaction operations. The file system then
knows it must complete either all the bracketed operations or none of them, but not
any other combinations.

NTEFS has an extensive journaling system and its structure is rarely corrupted
by system crashes. It has been in development since its first release with Windows
NT in 1993. The first Linux file system to do journaling was ReiserFS, but its pop-
ularity was impeded by the fact that it was incompatible with the then-standard
ext2 file system. In contrast, ext3, which is a less ambitious project than ReiserFS,
also does journaling while maintaining compatibility with the previous ext2 sys-
tem.

4.3.7 Virtual File Systems

Many different file systems are in use—often on the same computer—even for
the same operating system. A Windows system may have a main NTFS file sys-
tem, but also a legacy FAT-32 or FAT-16 drive or partition that contains old, but
still needed, data, and from time to time a flash drive, an old CD-ROM or a DVD
(each with its own unique file system) may be required as well. Windows handles
these disparate file systems by identifying each one with a different drive letter, as
in C:, D:, etc. When a process opens a file, the drive letter is explicitly or implicitly
present so Windows knows which file system to pass the request to. There is no at-
tempt to integrate heterogeneous file systems into a unified whole.

In contrast, all modern UNIX systems make a very serious attempt to integrate
multiple file systems into a single structure. A Linux system could have ext2 as
the root file system, with an ext3 partition mounted on /usr and a second hard disk
with a ReiserFS file system mounted on /home as well as an ISO 9660 CD-ROM
temporarily mounted on /mnt. From the user’s point of view, there is a single
file-system hierarchy. That it happens to encompass multiple (incompatible) file
systems is not visible to users or processes.

However, the presence of multiple file systems is very definitely visible to the
implementation, and since the pioneering work of Sun Microsystems (Kleiman,

SEC. 4.3 FILE-SYSTEM IMPLEMENTATION 297

1986), most UNIX systems have used the concept of a VES (virtual file system)
to try to integrate multiple file systems into an orderly structure. The key idea is to
abstract out that part of the file system that is common to all file systems and put
that code in a separate layer that calls the underlying concrete file systems to ac-
tually manage the data. The overall structure is illustrated in Fig.4-18. The dis-
cussion below is not specific to Linux or FreeBSD or any other version of UNIX,
but gives the general flavor of how virtual file systems work in UNIX systems.

User —
process

POSIX

Virtual file system
lVFS interface
File —
system

GD
! ; {

| Buffer cache |

Figure 4-18. Position of the virtual file system.

All system calls relating to files are directed to the virtual file system for initial
processing. These calls, coming from user processes, are the standard POSIX calls,
such as open, read, write, Iseek, and so on. Thus the VFS has an “upper” interface
to user processes and it is the well-known POSIX interface.

The VFS also has a “lower” interface to the concrete file systems, which is
labeled VFS interface in Fig. 4-18. This interface consists of several dozen func-
tion calls that the VFS can make to each file system to get work done. Thus to cre-
ate a new file system that works with the VFS, the designers of the new file system
must make sure that it supplies the function calls the VFS requires. An obvious
example of such a function is one that reads a specific block from disk, puts it in
the file system’s buffer cache, and returns a pointer to it. Thus the VFS has two dis-
tinct interfaces: the upper one to the user processes and the lower one to the con-
crete file systems.

While most of the file systems under the VFES represent partitions on a local
disk, this is not always the case. In fact, the original motivation for Sun to build
the VFS was to support remote file systems using the NFS (Network File System)
protocol. The VES design is such that as long as the concrete file system supplies
the functions the VES requires, the VFS does not know or care where the data are
stored or what the underlying file system is like.

Internally, most VFS implementations are essentially object oriented, even if
they are written in C rather than C++. There are several key object types that are

298 FILE SYSTEMS CHAP. 4

normally supported. These include the superblock (which describes a file system),
the v-node (which describes a file), and the directory (which describes a file sys-
tem directory). Each of these has associated operations (methods) that the concrete
file systems must support. In addition, the VFS has some internal data structures
for its own use, including the mount table and an array of file descriptors to keep
track of all the open files in the user processes.

To understand how the VES works, let us run through an example chronologi-
cally. When the system is booted, the root file system is registered with the VFS.
In addition, when other file systems are mounted, either at boot time or during op-
eration, they, too must register with the VFES. When a file system registers, what it
basically does is provide a list of the addresses of the functions the VES requires,
either as one long call vector (table) or as several of them, one per VFS object, as
the VFS demands. Thus once a file system has registered with the VFS, the VFS
knows how to, say, read a block from it—it simply calls the fourth (or whatever)
function in the vector supplied by the file system. Similarly, the VES then also
knows how to carry out every other function the concrete file system must supply:
it just calls the function whose address was supplied when the file system regis-
tered.

After a file system has been mounted, it can be used. For example, if a file sys-
tem has been mounted on /usr and a process makes the call

open("/usr/include/unistd.h", O_RDONLY)

while parsing the path, the VFS sees that a new file system has been mounted on
/usr and locates its superblock by searching the list of superblocks of mounted file
systems. Having done this, it can find the root directory of the mounted file system
and look up the path include/unistd.h there. The VES then creates a v-node and
makes a call to the concrete file system to return all the information in the file’s i-
node. This information is copied into the v-node (in RAM), along with other infor-
mation, most importantly the pointer to the table of functions to call for operations
on v-nodes, such as read, write, close, and so on.

After the v-node has been created, the VFS makes an entry in the file-descrip-
tor table for the calling process and sets it to point to the new v-node. (For the
purists, the file descriptor actually points to another data structure that contains the
current file position and a pointer to the v-node, but this detail is not important for
our purposes here.) Finally, the VFS returns the file descriptor to the caller so it
can use it to read, write, and close the file.

Later when the process does a read using the file descriptor, the VFS locates
the v-node from the process and file descriptor tables and follows the pointer to the
table of functions, all of which are addresses within the concrete file system on
which the requested file resides. The function that handles read is now called and
code within the concrete file system goes and gets the requested block. The VFS
has no idea whether the data are coming from the local disk, a remote file system
over the network, a USB stick, or something different. The data structures involved

SEC. 4.3 FILE-SYSTEM IMPLEMENTATION 299

are shown in Fig. 4-19. Starting with the caller’s process number and the file de-
scriptor, successively the v-node, read function pointer, and access function within
the concrete file system are located.

File
Process descriptors
table

Function
pointers

Call from
<— VFSinto

FS 1

Read
function

FS1

Figure 4-19. A simplified view of the data structures and code used by the VES
and concrete file system to do a read.

In this manner, it becomes relatively straightforward to add new file systems.
To make one, the designers first get a list of function calls the VFS expects and
then write their file system to provide all of them. Alternatively, if the file system
already exists, then they have to provide wrapper functions that do what the VFS
needs, usually by making one or more native calls to the concrete file system.

4.4 FILE-SYSTEM MANAGEMENT AND OPTIMIZATION

Making the file system work is one thing; making it work efficiently and
robustly in real life is something quite different. In the following sections we will
look at some of the issues involved in managing disks.

300 FILE SYSTEMS CHAP. 4
4.4.1 Disk-Space Management

Files are normally stored on disk, so management of disk space is a major con-
cern to file-system designers. Two general strategies are possible for storing an n
byte file: n consecutive bytes of disk space are allocated, or the file is split up into
a number of (not necessarily) contiguous blocks. The same trade-off is present in
memory-management systems between pure segmentation and paging.

As we have seen, storing a file as a contiguous sequence of bytes has the ob-
vious problem that if a file grows, it may have to be moved on the disk. The same
problem holds for segments in memory, except that moving a segment in memory
is a relatively fast operation compared to moving a file from one disk position to
another. For this reason, nearly all file systems chop files up into fixed-size blocks
that need not be adjacent.

Block Size

Once it has been decided to store files in fixed-size blocks, the question arises
how big the block should be. Given the way disks are organized, the sector, the
track, and the cylinder are obvious candidates for the unit of allocation (although
these are all device dependent, which is a minus). In a paging system, the page
size is also a major contender.

Having a large block size means that every file, even a 1-byte file, ties up an
entire cylinder. It also means that small files waste a large amount of disk space.
On the other hand, a small block size means that most files will span multiple
blocks and thus need multiple seeks and rotational delays to read them, reducing
performance. Thus if the allocation unit is too large, we waste space; if it is too
small, we waste time.

Making a good choice requires having some information about the file-size
distribution. Tanenbaum et al. (2006) studied the file-size distribution in the Com-
puter Science Department of a large research university (the VU) in 1984 and then
again in 2005, as well as on a commercial Web server hosting a political Website
(www.electoral-vote.com). The results are shown in Fig.4-20, where for each
power-of-two file size, the percentage of all files smaller or equal to it is listed for
each of the three data sets. For example, in 2005, 59.13% of all files at the VU
were 4 KB or smaller and 90.84% of all files were 64 KB or smaller. The median
file size was 2475 bytes. Some people may find this small size surprising.

What conclusions can we draw from these data? For one thing, with a block
size of 1 KB, only about 30-50% of all files fit in a single block, whereas with a
4-KB block, the percentage of files that fit in one block goes up to the 60-70%
range. Other data in the paper show that with a 4-KB block, 93% of the disk blocks
are used by the 10% largest files. This means that wasting some space at the end of
each small file hardly matters because the disk is filled up by a small number of

www.electoral-vote.com

SEC. 44 FILE-SYSTEM MANAGEMENT AND OPTIMIZATION 301

Length | VU 1984 | VU 2005 Web Length | VU 1984 | VU 2005 Web
1 1.79 1.38 6.67 16 KB 92.53 78.92 86.79

2 1.88 1.53 7.67 32 KB 97.21 85.87 91.65

4 2.01 1.65 8.33 64 KB 99.18 90.84 94.80

8 2.31 1.80 | 11.30 128 KB 99.84 93.73 96.93

16 3.32 215 | 11.46 256 KB 99.96 96.12 98.48
32 5.13 3.15 | 12.33 512 KB 100.00 97.73 98.99
64 8.71 4.98 | 26.10 1 MB 100.00 98.87 99.62
128 14.73 8.03 | 28.49 2 MB 100.00 99.44 99.80
256 23.09 13.29 | 32.10 4 MB 100.00 99.71 99.87
512 34.44 20.62 | 39.94 8 MB 100.00 99.86 99.94
1 KB 48.05 30.91 | 47.82 16 MB 100.00 99.94 99.97
2KB 60.87 46.09 | 59.44 32 MB 100.00 99.97 99.99
4 KB 75.31 59.13 | 70.64 64 MB 100.00 99.99 99.99
8 KB 84.97 69.96 | 79.69 128 MB 100.00 99.99 | 100.00

Figure 4-20. Percentage of files smaller than a given size (in bytes).

large files (videos) and the total amount of space taken up by the small files hardly
matters at all. Even doubling the space the smallest 90% of the files take up would
be barely noticeable.

On the other hand, using a small block means that each file will consist of
many blocks. Reading each block normally requires a seek and a rotational delay
(except on a solid-state disk), so reading a file consisting of many small blocks will
be slow.

As an example, consider a disk with 1 MB per track, a rotation time of 8.33
msec, and an average seek time of 5 msec. The time in milliseconds to read a block
of k bytes is then the sum of the seek, rotational delay, and transfer times:

5 +4.165 + (k/1000000) x 8.33

The dashed curve of Fig. 4-21 shows the data rate for such a disk as a function of
block size. To compute the space efficiency, we need to make an assumption about
the mean file size. For simplicity, let us assume that all files are 4 KB. Although
this number is slightly larger than the data measured at the VU, students probably
have more small files than would be present in a corporate data center, so it might
be a better guess on the whole. The solid curve of Fig. 4-21 shows the space ef-
ficiency as a function of block size.

The two curves can be understood as follows. The access time for a block is
completely dominated by the seek time and rotational delay, so given that it is
going to cost 9 msec to access a block, the more data that are fetched, the better.

302 FILE SYSTEMS CHAP. 4

60 — 100%

50~ 80%

40 —
60%
30 —

40%
20 —

Data rate (MB/sec)
Disk space utilization

20%

0 J U P Yy L T Py
1KB 4KB 16KB 64KB 256KB 1MB

Figure 4-21. The dashed curve (left-hand scale) gives the data rate of a disk. The
solid curve (right-hand scale) gives the disk-space efficiency. All files are 4 KB.

Hence the data rate goes up almost linearly with block size (until the transfers take
so long that the transfer time begins to matter).

Now consider space efficiency. With 4-KB files and 1-KB, 2-KB, or 4-KB
blocks, files use 4, 2, and 1 block, respectively, with no wastage. With an 8-KB
block and 4-KB files, the space efficiency drops to 50%, and with a 16-KB block it
is down to 25%. In reality, few files are an exact multiple of the disk block size, so
some space is always wasted in the last block of a file.

What the curves show, however, is that performance and space utilization are
inherently in conflict. Small blocks are bad for performance but good for disk-
space utilization. For these data, no reasonable compromise is available. The size
closest to where the two curves cross is 64 KB, but the data rate is only 6.6 MB/sec
and the space efficiency is about 7%, neither of which is very good. Historically,
file systems have chosen sizes in the 1-KB to 4-KB range, but with disks now
exceeding 1 TB, it might be better to increase the block size to 64 KB and accept
the wasted disk space. Disk space is hardly in short supply any more.

In an experiment to see if Windows NT file usage was appreciably different
from UNIX file usage, Vogels made measurements on files at Cornell University
(Vogels, 1999). He observed that NT file usage is more complicated than on
UNIX. He wrote:

When we type a few characters in the Notepad text editor, saving this to a
file will trigger 26 system calls, including 3 failed open attempts, 1 file
overwrite and 4 additional open and close sequences.

Nevertheless, Vogels observed a median size (weighted by usage) of files just read
as 1 KB, files just written as 2.3 KB, and files read and written as 4.2 KB. Given
the different data sets measurement techniques, and the year, these results are cer-
tainly compatible with the VU results.

SEC. 44 FILE-SYSTEM MANAGEMENT AND OPTIMIZATION 303
Keeping Track of Free Blocks

Once a block size has been chosen, the next issue is how to keep track of free
blocks. Two methods are widely used, as shown in Fig. 4-22. The first one con-
sists of using a linked list of disk blocks, with each block holding as many free
disk block numbers as will fit. With a 1-KB block and a 32-bit disk block number,
each block on the free list holds the numbers of 255 free blocks. (One slot is re-
quired for the pointer to the next block.) Consider a 1-TB disk, which has about 1
billion disk blocks. To store all these addresses at 255 per block requires about 4
million blocks. Generally, free blocks are used to hold the free list, so the storage
is essentially free.

Free disk blocks: 16, 17, 18

42 f» 230 (» 86 1001101101101100
136 162 234 0110110111110111
210 612 897 1010110110110110
97 342 422 0110110110111011
41 214 140 1110111011101111
63 160 223 1101101010001111
21 664 223 0000111011010111
48 216 160 1011101101101111
262 320 126 1100100011101111
310 180 142 0111011101110111
516 / 482 / 141 1101111101110111
A 1-KB disk block can hold 256 A bitmap

32-bit disk block numbers
(a) (b)

Figure 4-22. (a) Storing the free list on a linked list. (b) A bitmap.

The other free-space management technique is the bitmap. A disk with n
blocks requires a bitmap with n bits. Free blocks are represented by 1s in the map,
allocated blocks by Os (or vice versa). For our example 1-TB disk, we need 1 bil-
lion bits for the map, which requires around 130,000 1-KB blocks to store. It is
not surprising that the bitmap requires less space, since it uses 1 bit per block, vs.
32 bits in the linked-list model. Only if the disk is nearly full (i.e., has few free
blocks) will the linked-list scheme require fewer blocks than the bitmap.

If free blocks tend to come in long runs of consecutive blocks, the free-list sys-
tem can be modified to keep track of runs of blocks rather than single blocks. An
8-, 16-, or 32-bit count could be associated with each block giving the number of

304 FILE SYSTEMS CHAP. 4

consecutive free blocks. In the best case, a basically empty disk could be repres-
ented by two numbers: the address of the first free block followed by the count of
free blocks. On the other hand, if the disk becomes severely fragmented, keeping
track of runs is less efficient than keeping track of individual blocks because not
only must the address be stored, but also the count.

This issue illustrates a problem operating system designers often have. There
are multiple data structures and algorithms that can be used to solve a problem, but
choosing the best one requires data that the designers do not have and will not have
until the system is deployed and heavily used. And even then, the data may not be
available. For example, our own measurements of file sizes at the VU in 1984 and
1995, the Website data, and the Cornell data are only four samples. While a lot bet-
ter than nothing, we have little idea if they are also representative of home com-
puters, corporate computers, government computers, and others. With some effort
we might have been able to get a couple of samples from other kinds of computers,
but even then it would be foolish to extrapolate to all computers of the kind meas-
ured.

Getting back to the free list method for a moment, only one block of pointers
need be kept in main memory. When a file is created, the needed blocks are taken
from the block of pointers. When it runs out, a new block of pointers is read in
from the disk. Similarly, when a file is deleted, its blocks are freed and added to
the block of pointers in main memory. When this block fills up, it is written to
disk.

Under certain circumstances, this method leads to unnecessary disk I/0O. Con-
sider the situation of Fig. 4-23(a), in which the block of pointers in memory has
room for only two more entries. If a three-block file is freed, the pointer block
overflows and has to be written to disk, leading to the situation of Fig. 4-23(b). If
a three-block file is now written, the full block of pointers has to be read in again,
taking us back to Fig. 4-23(a). If the three-block file just written was a temporary
file, when it is freed, another disk write is needed to write the full block of pointers
back to the disk. In short, when the block of pointers is almost empty, a series of
short-lived temporary files can cause a lot of disk I/O.

An alternative approach that avoids most of this disk I/O is to split the full
block of pointers. Thus instead of going from Fig. 4-23(a) to Fig. 4-23(b), we go
from Fig. 4-23(a) to Fig. 4-23(c) when three blocks are freed. Now the system can
handle a series of temporary files without doing any disk I/O. If the block in mem-
ory fills up, it is written to the disk, and the half-full block from the disk is read in.
The idea here is to keep most of the pointer blocks on disk full (to minimize disk
usage), but keep the one in memory about half full, so it can handle both file crea-
tion and file removal without disk I/O on the free list.

With a bitmap, it is also possible to keep just one block in memory, going to
disk for another only when it becomes completely full or empty. An additional
benefit of this approach is that by doing all the allocation from a single block of the
bitmap, the disk blocks will be close together, thus minimizing disk-arm motion.

SEC. 44 FILE-SYSTEM MANAGEMENT AND OPTIMIZATION 305

Main D/iSk

memory

(a) (b) (©

Figure 4-23. (a) An almost-full block of pointers to free disk blocks in memory
and three blocks of pointers on disk. (b) Result of freeing a three-block file.

(c) An alternative strategy for handling the three free blocks. The shaded entries
represent pointers to free disk blocks.

Since the bitmap is a fixed-size data structure, if the kernel is (partially) paged, the
bitmap can be put in virtual memory and have pages of it paged in as needed.

Disk Quotas

To prevent people from hogging too much disk space, multiuser operating sys-
tems often provide a mechanism for enforcing disk quotas. The idea is that the sys-
tem administrator assigns each user a maximum allotment of files and blocks, and
the operating system makes sure that the users do not exceed their quotas. A typi-
cal mechanism is described below.

When a user opens a file, the attributes and disk addresses are located and put
into an open-file table in main memory. Among the attributes is an entry telling
who the owner is. Any increases in the file’s size will be charged to the owner’s
quota.

A second table contains the quota record for every user with a currently open
file, even if the file was opened by someone else. This table is shown in Fig. 4-24.
It is an extract from a quota file on disk for the users whose files are currently
open. When all the files are closed, the record is written back to the quota file.

When a new entry is made in the open-file table, a pointer to the owner’s quota
record is entered into it, to make it easy to find the various limits. Every time a
block is added to a file, the total number of blocks charged to the owner is incre-
mented, and a check is made against both the hard and soft limits. The soft limit
may be exceeded, but the hard limit may not. An attempt to append to a file when
the hard block limit has been reached will result in an error. Analogous checks also
exist for the number of files to prevent a user from hogging all the i-nodes.

When a user attempts to log in, the system examines the quota file to see if the
user has exceeded the soft limit for either number of files or number of disk blocks.

306 FILE SYSTEMS CHAP. 4

Open file table Quota table

Attributes Soft block limit

disk addresses Hard block limit

User=8

ser Current # of blocks

Quota pointer — # Block warnings left Quota

record
Soft file limit for user 8

Hard file limit

Current # of files

T ”I' # File warnings left

Figure 4-24. Quotas are kept track of on a per-user basis in a quota table.

If either limit has been violated, a warning is displayed, and the count of warnings
remaining is reduced by one. If the count ever gets to zero, the user has ignored
the warning one time too many, and is not permitted to log in. Getting permission
to log in again will require some discussion with the system administrator.

This method has the property that users may go above their soft limits during a
login session, provided they remove the excess before logging out. The hard limits
may never be exceeded.

4.4.2 File-System Backups

Destruction of a file system is often a far greater disaster than destruction of a
computer. If a computer is destroyed by fire, lightning surges, or a cup of coffee
poured onto the keyboard, it is annoying and will cost money, but generally a re-
placement can be purchased with a minimum of fuss. Inexpensive personal com-
puters can even be replaced within an hour by just going to a computer store (ex-
cept at universities, where issuing a purchase order takes three committees, five
signatures, and 90 days).

If a computer’s file system is irrevocably lost, whether due to hardware or soft-
ware, restoring all the information will be difficult, time consuming, and in many
cases, impossible. For the people whose programs, documents, tax records, cus-
tomer files, databases, marketing plans, or other data are gone forever, the conse-
quences can be catastrophic. While the file system cannot offer any protection
against physical destruction of the equipment and media, it can help protect the
information. It is pretty straightforward: make backups. But that is not quite as
simple as it sounds. Let us take a look.

SEC. 44 FILE-SYSTEM MANAGEMENT AND OPTIMIZATION 307

Most people do not think making backups of their files is worth the time and
effort—until one fine day their disk abruptly dies, at which time most of them
undergo a deathbed conversion. Companies, however, (usually) well understand the
value of their data and generally do a backup at least once a day, often to tape.
Modern tapes hold hundreds of gigabytes and cost pennies per gigabyte. Neverthe-
less, making backups is not quite as trivial as it sounds, so we will examine some
of the related issues below.

Backups to tape are generally made to handle one of two potential problems:

1. Recover from disaster.

2. Recover from stupidity.

The first one covers getting the computer running again after a disk crash, fire,
flood, or other natural catastrophe. In practice, these things do not happen very
often, which is why many people do not bother with backups. These people also
tend not to have fire insurance on their houses for the same reason.

The second reason is that users often accidentally remove files that they later
need again. This problem occurs so often that when a file is “removed” in Win-
dows, it is not deleted at all, but just moved to a special directory, the recycle bin,
so it can be fished out and restored easily later. Backups take this principle further
and allow files that were removed days, even weeks, ago to be restored from old
backup tapes.

Making a backup takes a long time and occupies a large amount of space, so
doing it efficiently and conveniently is important. These considerations raise the
following issues. First, should the entire file system be backed up or only part of
it? At many installations, the executable (binary) programs are kept in a limited
part of the file-system tree. It is not necessary to back up these files if they can all
be reinstalled from the manufacturer’s Website or the installation DVD. Also,
most systems have a directory for temporary files. There is usually no reason to
back it up either. In UNIX, all the special files (I/O devices) are kept in a directory
/dev. Not only is backing up this directory not necessary, it is downright dangerous
because the backup program would hang forever if it tried to read each of these to
completion. In short, it is usually desirable to back up only specific directories and
everything in them rather than the entire file system.

Second, it is wasteful to back up files that have not changed since the previous
backup, which leads to the idea of incremental dumps. The simplest form of
incremental dumping is to make a complete dump (backup) periodically, say
weekly or monthly, and to make a daily dump of only those files that have been
modified since the last full dump. Even better is to dump only those files that have
changed since they were last dumped. While this scheme minimizes dumping time,
it makes recovery more complicated, because first the most recent full dump has to
be restored, followed by all the incremental dumps in reverse order. To ease recov-
ery, more sophisticated incremental dumping schemes are often used.

308 FILE SYSTEMS CHAP. 4

Third, since immense amounts of data are typically dumped, it may be desir-
able to compress the data before writing them to tape. However, with many com-
pression algorithms, a single bad spot on the backup tape can foil the decompres-
sion algorithm and make an entire file or even an entire tape unreadable. Thus the
decision to compress the backup stream must be carefully considered.

Fourth, it is difficult to perform a backup on an active file system. If files and
directories are being added, deleted, and modified during the dumping process, the
resulting dump may be inconsistent. However, since making a dump may take
hours, it may be necessary to take the system offline for much of the night to make
the backup, something that is not always acceptable. For this reason, algorithms
have been devised for making rapid snapshots of the file-system state by copying
critical data structures, and then requiring future changes to files and directories to
copy the blocks instead of updating them in place (Hutchinson et al., 1999). In this
way, the file system is effectively frozen at the moment of the snapshot, so it can
be backed up at leisure afterward.

Fifth and last, making backups introduces many nontechnical problems into an
organization. The best online security system in the world may be useless if the
system administrator keeps all the backup disks or tapes in his office and leaves it
open and unguarded whenever he walks down the hall to get coffee. All a spy has
to do is pop in for a second, put one tiny disk or tape in his pocket, and saunter off
jauntily. Goodbye security. Also, making a daily backup has little use if the fire
that burns down the computers also burns up all the backup disks. For this reason,
backup disks should be kept off-site, but that introduces more security risks (be-
cause now two sites must be secured). For a thorough discussion of these and
other practical administration issues, see Nemeth et al. (2013). Below we will dis-
cuss only the technical issues involved in making file-system backups.

Two strategies can be used for dumping a disk to a backup disk: a physical
dump or a logical dump. A physical dump starts at block O of the disk, writes all
the disk blocks onto the output disk in order, and stops when it has copied the last
one. Such a program is so simple that it can probably be made 100% bug free,
something that can probably not be said about any other useful program.

Nevertheless, it is worth making several comments about physical dumping.
For one thing, there is no value in backing up unused disk blocks. If the dumping
program can obtain access to the free-block data structure, it can avoid dumping
unused blocks. However, skipping unused blocks requires writing the number of
each block in front of the block (or the equivalent), since it is no longer true that
block k on the backup was block k on the disk.

A second concern is dumping bad blocks. It is nearly impossible to manufac-
ture large disks without any defects. Some bad blocks are always present. Some-
times when a low-level format is done, the bad blocks are detected, marked as bad,
and replaced by spare blocks reserved at the end of each track for just such emer-
gencies. In many cases, the disk controller handles bad-block replacement
transparently without the operating system even knowing about it.

SEC. 44 FILE-SYSTEM MANAGEMENT AND OPTIMIZATION 309

However, sometimes blocks go bad after formatting, in which case the operat-
ing system will eventually detect them. Usually, it solves the problem by creating a
“file” consisting of all the bad blocks—just to make sure they never appear in the
free-block pool and are never assigned. Needless to say, this file is completely
unreadable.

If all bad blocks are remapped by the disk controller and hidden from the oper-
ating system as just described, physical dumping works fine. On the other hand, if
they are visible to the operating system and maintained in one or more bad-block
files or bitmaps, it is absolutely essential that the physical dumping program get
access to this information and avoid dumping them to prevent endless disk read er-
rors while trying to back up the bad-block file.

Windows systems have paging and hibernation files that are not needed in the
event of a restore and should not be backed up in the first place. Specific systems
may also have other internal files that should not be backed up, so the dumping
program needs to be aware of them.

The main advantages of physical dumping are simplicity and great speed (basi-
cally, it can run at the speed of the disk). The main disadvantages are the inability
to skip selected directories, make incremental dumps, and restore individual files
upon request. For these reasons, most installations make logical dumps.

A logical dump starts at one or more specified directories and recursively
dumps all files and directories found there that have changed since some given
base date (e.g., the last backup for an incremental dump or system installation for a
full dump). Thus, in a logical dump, the dump disk gets a series of carefully iden-
tified directories and files, which makes it easy to restore a specific file or directory
upon request.

Since logical dumping is the most common form, let us examine a common al-
gorithm in detail using the example of Fig. 4-25 to guide us. Most UNIX systems
use this algorithm. In the figure we see a file tree with directories (squares) and
files (circles). The shaded items have been modified since the base date and thus
need to be dumped. The unshaded ones do not need to be dumped.

This algorithm also dumps all directories (even unmodified ones) that lie on
the path to a modified file or directory for two reasons. The first reason is to make
it possible to restore the dumped files and directories to a fresh file system on a dif-
ferent computer. In this way, the dump and restore programs can be used to tran